M MOTT MACDONALD

Memorandum

Subject Surface/Earth Load Evaluation

To Vermont Gas Systems, Inc.

From Mott MacDonald, LLC

Our reference 507105094

Office West Springfield, MA

Date June 15, 2021

1 Introduction

Vermont Gas Systems, Inc. (VGS) has requested that Mott MacDonald provide additional information regarding Mott MacDonald's prior analysis of whether the construction of the Addison Natural Gas Pipeline (ANGP) meets a HS-20+15% loading standard. Our prior analysis of the ANGP loading included two different assessments of the ANGP under the HS-20+15% loading standard. The first analysis in 2016 involved calculation of the loading on the ANGP using a generic loading calculation tool, the API RP 1102 tool, which is frequently used for general assessments of loading for highway and railway crossings. We used this tool to assess the loading on the ANGP assuming "no compaction¹" at a variety of depths and soil types that could be present along the ANGP. The second analysis utilized a more case-specific loading calculation, ANSI GPTC Z380.1, 2018 edition (GPTC), which is based on the same underlying loading research as the API 1102 tool and is also consistent with ASME/ANSI B31.8. In this 2017 loading analysis, we assessed representative input parameters that included depths of cover greater than or equal to two feet with soil types that exhibited low strength soil properties and the results demonstrated that the ANGP meets the HS-20+15% loading standard under such conditions.

VGS has asked Mott MacDonald to provide additional information about the assumptions used in those analyses in light of questions raised by the Vermont Public Utility Commission (Commission). We have reviewed our prior loading calculations as well as the Commission's January and April 2021 orders in Case No. 17-3550 questioning whether Mott MacDonald's calculations were based on "flawed assumptions about: (1) the diameter of the pipeline (12 inches versus 15 inches); (2) the method of burial (sink-in-the-swamp versus horizontal directional drilling); and (3) the density of the soil surrounding the pipeline." As explained in more detail below, the prior loading calculations utilized appropriate inputs regarding (1) pipe diameter, (2) burial method, and (3) soil density. In our professional opinion, the 2016 loading calculations accurately assessed a HS-20+15% loading standard and the 2017 loading calculations demonstrate the ANGP meets the HS-20+15% loading standard with depths of cover of 2 feet or greater.

In addition, we have performed a variety of sensitivity analyses using different methods (provided in Attachment B) for calculating the loading on the ANGP. These analyses, as well as our prior calculations, demonstrate that the ANGP meets the HS-20+15% loading standard with as little as 2 feet of cover even when assuming low soil strength properties that represent weak soils and/or an absence of soil compaction. In our professional judgment, after analyzing the loading calculations based on a variety of sensitivity assessments, the ANGP meets the HS-20+15% loading standard in areas where it is buried at least two feet.

_

¹ Our reference to "no compaction" adopts an assumption that mechanical means were not used to compact backfill soil materials. However, as discussed in section 2.3 varying modulus of soil reaction values were used to assess this condition.

2 Additional Information Regarding the 2016 and 2017 Calculations

The following responds to the Commission's specific questions regarding the (1) pipe diameter, (2) burial method, and (3) soil density and explains why the values used in our 2016 and 2017 calculations were appropriate for assessing whether the ANGP meets the HS-20+15% loading standard.

2.1 Diameter of pipeline

Our assessment of the loading on the ANGP assumed a pipe diameter of 12.75" (See Attachment A). The diameter that was utilized in these loading calculations was based on the outside diameter of the steel pipeline. Utilizing the steel pipeline outside diameter (12.75") is industry practice and is required for performing the loading evaluation using any of the standard loading calculation tools used in the industry, including API RP1102, ANSI GPTC Z380.1, 2018 edition (GPTC) and the Canadian Energy Pipeline Association Surface Loading Calculator (CEPA).

The Commission has questioned whether the diameter input should include the extra width of concrete coating on the pipe. The concrete coating is not taken into account in the diameter input because the concrete coating does not provide significant structural value to the steel pipeline itself. The concrete coating applied to the exterior of the ANGP pipeline is not a material factor when assessing the ability of the 12.75" diameter steel pipeline to withstand surface loads. Instead, concrete coating is used to provide negative buoyancy and protect the pipeline against external damage during installation. The industry standard surface and earth loading calculation tools for natural gas pipelines do not recommend changing the pipe diameter input based on a concrete coating layer. The 12.75" input for pipe diameter was therefore appropriate for the surface loading calculations even for those locations where the pipeline was coated with concrete.

2.2 Method of burial

Our assessment of the loading on the ANGP assumed installation of the ANGP was performed using an open trench installation rather than a bore or horizontal directional drill (HDD) installation. The Commission has questioned whether our loading calculations mistakenly assumed the ANGP was installed using HDD. The Commission's January 29, 2021 Order states that the assessment should have assumed an "open-cut trench with a pipeline diameter of 15.75" rather than a "data assessment tool applicable to an HDD installation that assumes a bore width of 12.75 inches." The Order appears to be referring to an input for "bored diameter" on the API RP 1102 calculation sheet, implying that because there was a value used for that input, we had treated the pipeline as though it was installed by bore.

Our use of the API RP 1102 tool for assessing the loading on a pipeline that is installed by open-cut trench was appropriate based on the guidance provided in API RP 1102. In particular, the guidance for that calculation method states in Section 4.7.2.1 that bored diameter ($B_d = D$) should be assumed when analyzing a trenched construction. In other words, the guidance instructs us to input the pipe diameter value for the bored diameter parameter when applying the calculation to an open trench construction. Our loading calculations followed this instruction by inputting the pipeline diameter (D = 12.75") for the bored diameter value (D = 12.75") we were fully aware that the pipeline was being installed by open-cut trench and therefore our calculations were consistent with this understanding and the API RP 1102 guidance.

2.3 Density of soil surrounding the pipeline

The Commission has also questioned whether our prior loading calculations included appropriate assumptions about the density of soil. The purpose of our 2016 loading assessment was to evaluate the "pipeline's integrity under loading without compaction of backfill." The density of the soil surrounding the pipeline is a factor when calculating the loading on the pipeline because different soil types and varying levels of compaction exert and transfer the pressure differently. The relevant parameter in the loading calculation that captures for these

variables is the modulus of soil reaction. Section 6.2 of the API RP 1102 provides general recommendations for trench installation including recommendations for compaction of backfill. The API RP 1102 loading calculation tool does not include an input parameter based on Section 6.2 compaction levels. Instead, the API RP1102 loading tool accounts for soil strength and compaction properties by allowing the user to input relevant modulus of soil reaction values that are consistent with various soil types and levels of compaction.

Accordingly, our 2016 loading evaluation using the API 1102 tool employed sensitivity analysis to evaluate various soil parameters that represented a wide range of modulus of soil reaction values, which is inputted using values ranging from 200 psi (representing very weak soils) to 2,000 psi (representing stronger soils). This modulus of soil reaction range represented soil types exhibiting "soft to medium clays and silts with high plasticities" (200 psi) to "dense to very dense sands and gravels" (2000 psi). The range in modulus of soil reaction values can also be understood as a range of soil compaction, with lower modulus of soil representing backfill with low strength soil properties and no compaction. Accordingly, our 2016 calculations provided an assessment of the "pipeline's integrity under loading without compaction of backfill" under a variety of circumstances including low soil strengths.

Likewise, our 2017 calculation modeled a low strength soil density (fully saturated clay), which is the equivalent of assessing loading with low or no compaction. Under all the soil densities we assessed, including the 2017 GPTC calculation, we concluded that the ANGP achieved the HS-20+15% loading criteria in locations where it is buried a minimum of two feet. We have also confirmed this conclusion by performing a variety of additional calculations as discussed below.

3 Additional Loading Calculation Validation

As part of our review of Mott MacDonald's prior loading calculations for ANGP, we performed several additional calculations utilizing the same GPTC method used in 2017, as well as a CEPA loading calculation tool, which also adheres to the ASME/ANSI B31.8² standard regarding combined equivalent stresses on a steel pipeline. These calculation tools are similar to the API RP 1102 tool used in 2016, are based on the same underlying principles, and are consistent with the combined stress formula found in ASME/ANSI B31.8 paragraph 833.4. Our verification calculations are provided as Attachment B and demonstrate that – like our prior loading calculations – the ANGP meets the HS-20+15% loading standard for a variety of scenarios. For example, one such scenario modeled the loading on the ANGP based on a low strength soil simply "dumped" (100 psi) into the trench with no subsequent compaction. The results show that the total effective stress from a HS-20+15% load is 47,563 psi, which is well below the total effective stress that can be safely handled by the ANGP.

Based on our review of the prior calculations, as well as our calculations verifying similar results under a variety of scenarios, Mott MacDonald is of the opinion that the loading analysis that has been performed utilized appropriate assumptions and input data for the ANGP construction, and the ANGP meets the HS-20+15% loading standard even where it is assumed there is only 2 feet of cover backfill with low strength soils.

² ASME has been defining piping safety since 1922. ASME B31.8 covers gas transmission and distribution piping systems, including gas pipelines, gas compressor stations, gas metering and regulation stations, gas mains, and service lines up to the outlet of the customer's meter set assembly.

Attachment A - 2016 & 2017 Calculations

Project Name: Vermont Gas Systems 5/25/2016

Location: Burlington, VT Rev. 1

<u>Prepared for</u>: Vermont Gas Systems

Prepared by: Mott MacDonald

Purpose:

Mott MacDonald has prepared the stress calculations included herein for Vermont Gas Systems, to ensure the pipeline's integrity under loading without compaction of backfill. The stress calculations were performed per API 1102, using various combinations of soil type and depth of cover to confirm that 90% compaction will not be necessary.

Knowns:

- Class 3 Location, Design Factor of 0.5
- 12.75 inch OD
- 0.312 inch WT
- API-5L Electric Resistance Welded
- Grade X-65
- MAOP of 1440 psi
- Design Wheel Load HS-20 + 15%

Results:

A summary table has been provided below. The stress calculations show that under all soil types, paired with 3', 4', and 5' of cover, the pipeline passes all stress checks (Hoop, Effective, Girth Weld, and Longitudinal Weld). In conclusion, Mott MacDonald recommends a minimum depth of cover of 4 feet. Although 3 feet of cover is sufficient under the given loading, a one foot buffer would help ensure that even if settlement were to occur, the pipeline would remain safe and operational.

API 1102 STRESS CALCULATION RE	SULTS		
	Calculated	d Effective S	Stress (psi)
Soil type	3' Cover	4' Cover	5' Cover
Soft to medium clays and silts with high plasticities	31,239	31,437	31,234
Soft to medium clays and silts with low/medium plasticities	31,180	31,370	31,159
Loose sands and gravels	30,360	30,550	30,427
Stiff to very stiff clays and silts	30,216	30,366	30,193
Medium dense sands and gravels	30,278	30,453	30,318
Dense to very dense sands and gravels	29,422	29,554	29,437
ALLOWABLE EFFECTIVE STRESS (psi)		32,500	

Note:

1. Calculated girth weld and longitudinal weld stress values were less than the allowable (Girth: 6,000 psi & Long. Welds: 11,500 psi).

Calculation cover sheet

Project Title:	VERMONT GA	S SYSTEMS PI	roject No:	351481KK	.01
File No:			o. of Sheets:	18	
Section:		S	ubject:	•	
Calc No:					
Project Manage	r:	D	esigner:		
Design Phase:	A - Concept or prelimi	nary C	- Design verifica	ion	
	B - Analysis and detai	led design D	- Other (specify)		
Computer Appli	cations Used:	1,,	Varadian Data		
Title:			ersion Date:		
PIPELINI	E TOOLROX		1013		
	0				
Scopes for Che	cking Manual and Compute	er Generated Calcula	ations:		
>Park	heck project in neck individual	formation			
-, DAUR U	moor project in	alculatio	nc to	varifa ra	cute
> Back of	neck individual	Calcul	10	reing les	suics
				J	
Sheets	Calculations by:		Checked By		
Checked: *	Name: Signature	e: Date:	Name:	Signature:	Date:
18/18	K.KIBBE Kelsus	Kim 5 25 1U	PATEN E A)(C)	5/25/16
				\cup	1
	0				
	sheet or other computer file has				
PiMS location of th	e file that was checked. (PiMS r	nickname or short link from			
PiMS location of th	e file that was checked. (PiMS n	nickname or short link from	m Properties – Gen	eral could also be use	ful.)
PiMS location of th	e file that was checked. (PiMS n	nickname or short link from	m Properties – Gen	eral could also be use	ful.)
PiMS location of th	e file that was checked. (PiMS n	nickname or short link from	m Properties – Gen	eral could also be use	ful.)
PiMS location of th	e file that was checked. (PiMS r	nickname or short link from	m Properties – Gen	eral could also be use	ful.)
PiMS location of the a) Basic Design > Design > API llo	e file that was checked. (PIMS n gn Information or Source at Info. per Mik 12 for design f	nickname or short link from nd Reference: Le Reagan 'S actors and	m Properties - Ger discuss procedur	eral could also be use	ful.)
PiMS location of the a) Basic Design > Design > API llo	e file that was checked. (PiMS n	nickname or short link from nd Reference: Le Reagan 'S actors and	m Properties - Gen discuss procedur used:	ions with	ful.)
PiMS location of the a) Basic Design > Design > API IIC b) Identify doc	e file that was checked. (PIMS non Information or Source at Info. per Mike 2 for design for the cuments/technical records	nickname or short link from nd Reference: e Reagan's actors and where output will be	m Properties - Gen discuss procedur used:	ions with	ful.)
PiMS location of the a) Basic Design > Design > API llo	e file that was checked. (PIMS non Information or Source at Info. per Mike 2 for design for the cuments/technical records	nickname or short link from nd Reference: Le Reagan 'S actors and	m Properties - Gen discuss procedur used:	eral could also be use	ful.)
PiMS location of the a) Basic Design > Design > API IIC b) Identify doc	e file that was checked. (PIMS non Information or Source at Info. per Mike 2 for design for the cuments/technical records	nickname or short link from nd Reference: e Reagan's actors and where output will be	m Properties - Gen discuss procedur used:	ions with	ful.)
PiMS location of the a) Basic Design > Design > API IIC b) Identify doc	e file that was checked. (PIMS non Information or Source at Info. per Mike 2 for design for the cuments/technical records	nickname or short link from nd Reference: e Reagan's actors and where output will be	m Properties - Gen discuss procedur used:	ions with	ful.)
PiMS location of the a) Basic Design > Design > API IIC b) Identify doc	e file that was checked. (PIMS non Information or Source at Info. per Mike 2 for design for the cuments/technical records	nickname or short link from nd Reference: e Reagan's actors and where output will be	m Properties - Gen discuss procedur used:	ions with	ful.)
PiMS location of the a) Basic Design > Design > API IIC b) Identify doc > Calcula	e file that was checked. (PIMS non Information or Source and Information or Source and Info per Mike and the first design for design for design for the suments/technical records the summary	mickname or short link from nd Reference: e Reagan's hotors and where output will be y provided	m Properties - Gen discuss procedur used:	eral could also be use	ful.)
PiMS location of the a) Basic Design > Design > API IIC b) Identify doc > Calcula	e file that was checked. (PIMS non Information or Source and Information or Source and Info per Mike and the first design for design for design for the suments/technical records the summary	mickname or short link from nd Reference: Le Reagan's actors and where output will be y provided	m Properties - Gen discuss procedur used:	eral could also be use	dient

Distribution:

Original to project file

Project		
Vermont Gas Systems		
Location	Date	
Burlington, VT	5/24/2016	-

			- 3						
	PIPE AND OPERATIONAL DATA:		SITE AI	ND IN	ISTALLAT	TION DATA	ı:		
	Operating Pressure [psi]	1440	Soil Typ	e:		edium clays	s and silts	with	n high
	Location Class:	3	E' - Mod	dulus	plasticitie of Soil Re	es eaction [ksi]		0.2	2
	Operating Temperature [°F]	60.0	Er - Res	silient	Modulus	[ksi]		5.0	o
	Pipe Outside Diameter [in]	12.75	Average	e Unit	:Weight c	of Soil [lb/ft³]]	12	0.00
-2	Pipe Wall Thickness [in]	0.312	Pipe De	epth [f	t]			3	
	Pipe Grade: X65		Bored D	Diame	ter [in]			12	.75
	Specified Minimum Yield Stress	65,000			emperatur	e [°F]		60	.0
	Design Factor	0.50	Design	Whee	el Load fro	om Single A	xle [kips]		18.4
	Longitudinal Joint Factor	1.0	Design	Whee	el Load fro	om Tandem	Axles [kip	os]	18.4
	Temperature Derating Factor	1.000	Paveme	ent Ty	pe: None	e			
	Pipe Class: API 5L Electric Res	sistance Welded	Impact	Facto	r Method	: ASCE - H	ighway		
	Young's Modulus for Steel [ksi]	30,000	,						
	Poisson's Ratio for Steel	0.30							
	Coefficient of Thermal Expansion [per°F] 0.0000065	Safety I	-acto	r Applied:	API 1102	2 Procedur	е	
	RESULTS								
	Hoop Stress [psi]		29,423			cumferentia		si]	34,305
	Allowable Hoop Stress [psi]		32,500	Maxi	mum Lon	igitudinal St	ress [psi]		12,239
	Stiffness Factor for Earth Load Circ	cumferential Stress	2,196	Maxi	mum Rad	dial Stress [psi]		-1,440
	Burial Factor for Earth Load Circum	nferential Stress	0.83	Tota	l Effective	Stress [ps	i]		31,239
	Excavation Factor for Earth Load C	ircumferential Stress	0.83	Allov	vable Effe	ective Stress	s [psi]		32,500
	Circumferential Stress from Earth L	oad [psi]	1,331						
	Impact Factor		1.50		ss [psi]	Calculated			
	Highway Stiffness Factor for Cyclic	Circumferential	16.60	Hoop		29,423 31,239	32,500 32,500	PA PA	
	Highway Geometry Factor for Cycli	c Circumferential	1.22		Welds	3,229	6,000	PA	
	Cyclic Circumferential Stress [psi]		4,271	Long	j. Welds	4,271	11,500	PA	SS
	Highway Stiffness Factor for Cyclic	Longitudinal Stress	13.20						
	Highway Geometry Factor for Cycli	c Longitudinal Stress	1.16						
	Cyclic Longitudinal Stress [psi]		3,229						

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe Approved By Revision: 13.0.1

Project		
Vermont Gas Systems		
Location	Date	
Burlington, VT	5/24/2016	

PIPE AND OPERATIONAL DATA:		SITE A	ND IN	STALLA	TION DATA	A :	
Operating Pressure [psi]	1440	Soil Ty		Soft to m	nedium clay	s and silts	with high
Location Class:	3	E' - Mo			es eaction [ksi]	0.2
Operating Temperature [°F]	60.0	Er - Re	silient	Modulus	[ksi]		5.0
Pipe Outside Diameter [in]	12.75	Averag	e Unit	Weight o	of Soil [lb/ft ^s	']	120.00
Pipe Wall Thickness [in]	0.312	Pipe D	epth [ft	<u>:</u>]			4
Pipe Grade: X65		Bored	Diame	ter [in]			12.75
Specified Minimum Yield Stress	65,000	Installa	tionTe	mperatu	re [°F]		60.0
Design Factor	0.50	Design	Whee	l Load fr	om Single /	Axle [kips]	18.4
Longitudinal Joint Factor	1.0	Design	Whee	l Load fr	om Tanden	n Axles [kip	os] 18.4
Temperature Derating Factor	1.000	Pavem	ent Ty	pe: Non	е		
Pipe Class: API 5L Electric Re	sistance Welded	Impact	Factor	r Method	: ASCE - H	lighway	
Young's Modulus for Steel [ksi]	30,000						
Poisson's Ratio for Steel	0.30				A 50 4 4 6		
Coefficient of Thermal Expansion	per°F] 0.0000065	Safety	Factor	Applied:	API 110	2 Procedur	е
RESULTS							
Hoop Stress [psi]		29,423	Maxii	mum Cir	cumferentia	al Stress [p:	si] 34,52
Allowable Hoop Stress [psi]		32,500	Maxii	mum Lor	ngitudinal S	tress [psi]	12,30
Stiffness Factor for Earth Load Cir	cumferential Stress	2,196	Maxi	mum Ra	dial Stress	[psi]	-1,440
Burial Factor for Earth Load Circur	nferential Stress	0.97	Total	Effective	e Stress [ps	si]	31,43
Excavation Factor for Earth Load (Circumferential Stress	0.83	Allow	able Effe	ective Stres	s [psi]	32,50
Circumferential Stress from Earth	Load [psi]	1,555					
Impact Factor		1.50		s [psi]		Allowable	
			Hoop		29,423	32,500	PASS
Highway Stiffness Factor for Cyclic	Circumferential	16.60		tivo	31 // 37	32 500	IPASS
Highway Stiffness Factor for Cyclic Highway Geometry Factor for Cyc		16.60 1.22	Effec	tive Welds	31,437 3,229	32,500 6,000	PASS PASS
•			Effect Girth				
Highway Geometry Factor for Cyc	ic Circumferential	1.22	Effect Girth	Welds	3,229	6,000	PASS
Highway Geometry Factor for Cyc Cyclic Circumferential Stress [psi]	ic Circumferential	1.22 4,271	Effect Girth	Welds	3,229	6,000	PASS

Project	
Vermont Gas Systems	
Location	Date
Burlington, VT	5/24/2016

PIPE AND OPERATIONAL DATA:		SITE AND INSTALLATION DATA:
Operating Pressure [psi]	1440	Soil Type: Soft to medium clays and silts with high
Location Class:	3	plasticities E' - Modulus of Soil Reaction [ksi] 0.2
Operating Temperature [°F]	60.0	Er - Resilient Modulus [ksi] 5.0
Pipe Outside Diameter [in]	12.75	Average Unit Weight of Soil [lb/ft³] 120.00
Pipe Wall Thickness [in]	0.312	Pipe Depth [ft] 5
Pipe Grade: X65		Bored Diameter [in] 12.75
Specified Minimum Yield Stress	65,000	InstallationTemperature [°F] 60.0
Design Factor	0.50	Design Wheel Load from Single Axle [kips] 18.4
Longitudinal Joint Factor	1.0	Design Wheel Load from Tandem Axles [kips] 18.4
Temperature Derating Factor	1.000	Pavement Type: None
Pipe Class: API 5L Electric Re	sistance Welded	Impact Factor Method: ASCE - Highway
Young's Modulus for Steel [ksi]	30,000	4
Poisson's Ratio for Steel	0.30	
Coefficient of Thermal Expansion	[per°F] 0.0000065	Safety Factor Applied: API 1102 Procedure

RESULTS

Hoop Stress [psi]	29,423	Maximum Circ	cumferentia	l Stress [p:	si] 34,285
Allowable Hoop Stress [psi]	32,500	Maximum Lon	igitudinal St	ress [psi]	12,136
Stiffness Factor for Earth Load Circumferential Stress	2,196	Maximum Rad	dial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	1.08	Total Effective	Stress [ps	i]	31,234
Excavation Factor for Earth Load Circumferential Stress	0.83=	Allowable Effe	ective Stress	s [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,732		£1		
Impact Factor	1.50	Stress [psi]	Calculated	Allowable	PASS/FAIL
Highway Stiffness Factor for Cyclic Circumferential	16.60	Ноор	29,423	32,500	PASS
·	4.40	Effective	31,234	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.10	Girth Welds	3.006	6.000	PASS

3,850

3,006

Girth Welds

Long. Welds 3,850

6,000

11,500

PASS

PASS

Highway Stiffness Factor for Cyclic Longitudinal Stress	13.20
Highway Geometry Factor for Cyclic Longitudinal Stress	1.08
Cyclic Longitudinal Stress [psi]	3,006

Cyclic Circumferential Stress [psi]

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Prepared By Kelsey Kibbe Approved By	Revision: 13.0.1
--------------------------------------	------------------

Project	
Vermont Gas Systems	
Location	Date
Burlington, VT	5/24/2016

		,					
PIPE AND OPERATIONAL DATA:		SITE A	ND IN	ISTALLA ⁻	TION DATA		
Operating Pressure [psi]	1440	Soil Typ	oe:		edium clay		with
Location Class:	3	E' - Mo	dulus		ium plasticit eaction [ksi]		0.5
Operating Temperature [°F]	60.0	Er - Re	silient	Modulus	[ksi]		5.0
Pipe Outside Diameter [in]	12.75	Averag	e Unit	: Weight o	of Soil [lb/ft³]		120.00
Pipe Wall Thickness [in]	0.312	Pipe De	epth [1	t]			3
Pipe Grade: X65		Bored [Diame	eter [in]			12.75
Specified Minimum Yield Stress	65,000	Installa	tionTe	emperatui	re [°F]		60.0
Design Factor	0.50	Design	Whee	el Load fro	om Single A	xle [kips]	18.4
Longitudinal Joint Factor	1.0	Design	Whe	el Load fro	om Tandem	Axles [kip	s] 18.4
Temperature Derating Factor	1.000	Pavem	ent Ty	pe: None	е		
Pipe Class: API 5L Electric Re	sistance Welded	Impact	Facto	r Method	: ASCE - H	ighway	
Young's Modulus for Steel [ksi]	30,000						
Poisson's Ratio for Steel	0.30						
Coefficient of Thermal Expansion	per°F] 0.0000065	Safety	Facto	r Applied:	API 1102	! Procedur	е
RESULTS							
Hoop Stress [psi]		29,423	Max	mum Circ	cumferentia	Stress [p:	si] 34,239
Allowable Hoop Stress [psi]		32,500	Max	mum Lor	ngitudinal St	ress [psi]	12,219
Stiffness Factor for Earth Load Cir	cumferential Stress	2,088	Max	mum Rad	dial Stress [psi]	-1,440
Burial Factor for Earth Load Circur	nferential Stress	0.83	Tota	l Effective	Stress [psi]	31,180
Excavation Factor for Earth Load (Circumferential Stress	0.83	Allov	vable Effe	ective Stress	s [psi]	32,500
Circumferential Stress from Earth	Load [psi]	1,265					
Impact Factor		1.50		ss [psi]			PASS/FAIL
Highway Stiffness Factor for Cyclic	: Circumferential	16.60	Hoop		29,423 31,180	32,500 32,500	PASS PASS
Highway Geometry Factor for Cycl	ic Circumferential	1.22		Welds	3,229	6,000	PASS
Cyclic Circumferential Stress [psi]		4,271			4,271	11,500	PASS
Highway Stiffness Factor for Cyclic	Longitudinal Stress	13.20	**		-		

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Highway Geometry Factor for Cyclic Longitudinal Stress 1.16

Cyclic Longitudinal Stress [psi]

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project		
Vermont Gas Systems		
Location	Date	
Burlington, VT	5/24/2016	

	0 0				
PIPE AND OPERATIONAL DATA:		SITE AN	ND IN	STALLATION DATA:	
Operating Pressure [psi]	1440	Soil Typ	e:	Soft to medium clays and silts w	vith
Location Class:	3	E' - Mod	lulus	low/medium plasticities of Soil Reaction [ksi]	0.5
Operating Temperature [°F]	60.0	Er - Res	ilient	Modulus [ksi]	5.0
Pipe Outside Diameter [in]	12.75	Average	unit	Weight of Soil [lb/ft³]	120.00
Pipe Wall Thickness [in]	0.312	Pipe De	pth [f	t]	4
Pipe Grade: X65		Bored D	iame	ter [in]	12.75
Specified Minimum Yield Stress	65,000	Installati	ionTe	emperature [°F]	60.0
Design Factor	0.50	Design \	Whee	el Load from Single Axle [kips]	18.4
Longitudinal Joint Factor	1.0	Design \	Whee	el Load from Tandem Axles [kips	s] 18.4
Temperature Derating Factor	1.000	Paveme	ent Ty	pe: None	
Pipe Class: API 5L Electric Res	sistance Welded	Impact I	Facto	r Method: ASCE - Highway	
Young's Modulus for Steel [ksi]	30,000				
Poisson's Ratio for Steel	0.30				
Coefficient of Thermal Expansion [per°F] 0.0000065	Safety F	-acto	r Applied: API 1102 Procedure	
RESULTS					
Hoop Stress [psi]		29,423	Maxi	mum Circumferential Stress [psi	i] 34,453
Allowable Hoop Stress [psi]		32,500	Maxi	mum Longitudinal Stress [psi]	12,284
Stiffness Factor for Earth Load Circ	cumferential Stress	2,088	Maxi	mum Radial Stress [psi]	-1,440
Burial Factor for Earth Load Circum	nferential Stress	0.97	Tota	l Effective Stress [psi]	31,370
Excavation Factor for Earth Load C	Circumferential Stress	0.83	Allov	vable Effective Stress [psi]	32,500
Circumferential Stress from Earth I	and Incil	1 470			

Stiffness Factor for Earth Load Circumferential Stress	2,088
Burial Factor for Earth Load Circumferential Stress	0.97
Excavation Factor for Earth Load Circumferential Stress	0.83
Circumferential Stress from Earth Load [psi]	1,479
Impact Factor	1.50
Highway Stiffness Factor for Cyclic Circumferential	16.60
Highway Geometry Factor for Cyclic Circumferential	1.22
Cyclic Circumferential Stress [psi]	4,271
Highway Stiffness Factor for Cyclic Longitudinal Stress	13.20

Highway Geometry Factor for Cyclic Longitudinal Stress 1.16

Cyclic Longitudinal Stress [psi]

Stress [psi]	Calculated	Allowable	PASS/FAIL
Ноор	29,423	32,500	PASS
Effective	31,370	32,500	PASS
Girth Welds	3,229	6,000	PASS
Long. Welds	4,271	11,500	PASS

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe Approved By Revision: 13.0.1

Project		
Vermont Gas Systems		
Location	Date	
Burlington, VT	5/24/2016	

PIPE AND OPERATIONAL DATA	:	SITE AND INSTALLATION DATA:	
Operating Pressure [psi]	1440	Soil Type: Soft to medium clays and silts with	
Location Class:	3	low/medium plasticities E' - Modulus of Soil Reaction [ksi] 0.5	
Operating Temperature [°F]	60.0	Er - Resilient Modulus [ksi] 5.0	
Pipe Outside Diameter [in]	12.75	Average Unit Weight of Soil [lb/ft³] 120.00	
Pipe Wall Thickness [in]	0.312	Pipe Depth [ft] 5	
Pipe Grade: X65		Bored Diameter [in] 12.75	
Specified Minimum Yield Stress	65,000	InstallationTemperature [°F] 60.0	
Design Factor	0.50	Design Wheel Load from Single Axle [kips] 18.4	
Longitudinal Joint Factor	1.0	Design Wheel Load from Tandem Axles [kips] 18.4	
Temperature Derating Factor	1.000	Pavement Type: None	
Pipe Class: API 5L Electric Re	esistance Welded	Impact Factor Method: ASCE - Highway	
Young's Modulus for Steel [ksi]	30,000		
Poisson's Ratio for Steel	0.30		
Coefficient of Thermal Expansion	[per°F] 0.0000065	Safety Factor Applied: API 1102 Procedure	
RESULTS			
Hoop Stress [psi]		29,423 Maximum Circumferential Stress [psi] 34,2	00
Allowable Hoop Stress [psi]		32,500 Maximum Longitudinal Stress [psi] 12,1	11

Hoop Stress [psi]	29,423	Maximum Circ	cumferentia	Stress [ps	si] 34,200
Allowable Hoop Stress [psi]	32,500	Maximum Lon	gitudinal St	ress [psi]	12,111
Stiffness Factor for Earth Load Circumferential Stress	2,088	Maximum Rad	ial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	1.08	Total Effective	Stress [psi]	31,159
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effe	ctive Stress	s [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,647				
Impact Factor	1.50	Stress [psi]	Calculated		PASS/FAIL
Highway Stiffness Factor for Cyclic Circumferential	16.60	Ноор			PASS
		Effective	31,159	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.10	Girth Welds	3,006	6,000	PASS
Cyclic Circumferential Stress [psi]	3,850	Long. Welds	3,850	11,500	PASS

29,423	32,500	PASS
31,159	32,500	PASS
3,006	6,000	PASS
3,850	11,500	PASS
	3,006	31,159 32,500 3,006 6,000

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Highway Stiffness Factor for Cyclic Longitudinal Stress

Cyclic Longitudinal Stress [psi]

Highway Geometry Factor for Cyclic Longitudinal Stress 1.08

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project	
Vermont Gas Systems	
Location	Date
Burlington, VT	5/24/2016

PIPE AND OPERATIONAL DATA:		SITE AND INSTALLATION DATA:	
Operating Pressure [psi]	1440	Soil Type: Loose sands and gravels	
Location Class:	3	E' - Modulus of Soil Reaction [ksi]	0.5
Operating Temperature [°F]	60.0	Er - Resilient Modulus [ksi]	10.0
Pipe Outside Diameter [in]	12.75	Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Wall Thickness [in]	0.312	Pipe Depth [ft]	3
Pipe Grade: X65		Bored Diameter [in]	12.75
Specified Minimum Yield Stress	65,000	InstallationTemperature [°F]	60.0
Design Factor	0.50	Design Wheel Load from Single Axle [kips]	18.4
Longitudinal Joint Factor	1.0	Design Wheel Load from Tandem Axles [kip	os] 18.4
Temperature Derating Factor	1.000	Pavement Type: None	
Pipe Class: API 5L Electric Re	sistance Welded	Impact Factor Method: ASCE - Highway	
Young's Modulus for Steel [ksi]	30,000	4	
Poisson's Ratio for Steel	0.30		
Coefficient of Thermal Expansion	[per°F] 0.0000065	Safety Factor Applied: API 1102 Procedur	re

RESULTS

Hoop Stress [psi]	29,423	Maximum Circ	cumferentia	Stress [p	si] 33,209
Allowable Hoop Stress [psi]	32,500	Maximum Lon	gitudinal St	ress [psi]	11,265
Stiffness Factor for Earth Load Circumferential Stress	2,088	Maximum Rad	dial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	0.83	Total Effective	Stress [psi	i]	30,360
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effe	ctive Stress	s [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,265				
Impact Factor	1.50	Stress [psi]	Calculated	Allowable	PASS/FAIL
Highway Stiffness Factor for Cyclic Circumferential	12.60	Ноор		,	PASS
	4.00	Effective	30,360	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.22	Girth Welds	2,275	6,000	PASS
Cyclic Circumferential Stress [psi]	3,241	Long. Welds	3,241	11,500	PASS

Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16
Cyclic Longitudinal Stress [psi]	2,275

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project		
Vermont Gas Systems		
Location	Date	
Burlington, VT	5/24/2016	

PIPE AND OPERATIONAL DATA	:	SITE AND INSTALLATION DATA:	
Operating Pressure [psi]	1440	Soil Type: Loose sands and gravels	
Location Class:	3	E' - Modulus of Soil Reaction [ksi]	0.5
Operating Temperature [°F]	60.0	Er - Resilient Modulus [ksi]	10.0
Pipe Outside Diameter [in]	12.75	Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Wall Thickness [in]	0.312	Pipe Depth [ft]	4
Pipe Grade: X65		Bored Diameter [in]	12.75
Specified Minimum Yield Stress	65,000	InstallationTemperature [°F]	60.0
Design Factor	0.50	Design Wheel Load from Single Axle [kips]	18.4
Longitudinal Joint Factor	1.0	Design Wheel Load from Tandem Axles [kip	s] 18.4
Temperature Derating Factor	1.000	Pavement Type: None	
Pipe Class: API 5L Electric Re	esistance Welded	Impact Factor Method: ASCE - Highway	
Young's Modulus for Steel [ksi]	30,000		
Poisson's Ratio for Steel	0.30		
Coefficient of Thermal Expansion	[per°F] 0.0000065	Safety Factor Applied: API 1102 Procedur	e

RESULTS

Hoop Stress [psi]	29,423	Maximum Circ	cumferentia	l Stress [p	si] 33,423
Allowable Hoop Stress [psi]	32,500	Maximum Lon	gitudinal St	ress [psi]	11,330
Stiffness Factor for Earth Load Circumferential Stress	2,088	Maximum Rad	dial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	0.97	Total Effective	Stress [ps	i]	30,550
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effe	ctive Stress	s [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,479				
Impact Factor	1.50	Stress [psi]	Calculated	Allowable	PASS/FAIL
Highway Stiffness Factor for Cyclic Circumferential	12.60	Ноор	29,423	32,500	PASS
		Effective	30,550	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.22	Girth Welds	2,275	6,000	PASS
Cyclic Circumferential Stress [psi]	3,241	Long. Welds	3,241	11,500	PASS

Highway Geometry Factor for Cyclic Longitudinal Stress	1.16
Cyclic Longitudinal Stress [psi]	2,275

Highway Stiffness Factor for Cyclic Longitudinal Stress 9.30

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project		
Vermont Gas Systems		
Location	Date	
Burlington, VT	5/24/2016	

PIPE AND OPERATIONAL DATA	:	SITE AND INSTALLATION DATA:	
Operating Pressure [psi]	1440	Soil Type: Loose sands and gravels	
Location Class:	3	E' - Modulus of Soil Reaction [ksi]	0.5
Operating Temperature [°F]	60.0	Er - Resilient Modulus [ksi]	10.0
Pipe Outside Diameter [in]	12.75	Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Wall Thickness [in]	0.312	Pipe Depth [ft]	5
Pipe Grade: X65		Bored Diameter [in]	12.75
Specified Minimum Yield Stress	65,000	InstallationTemperature [°F]	60.0
Design Factor	0.50	Design Wheel Load from Single Axle [kips]	18.4
Longitudinal Joint Factor	1.0	Design Wheel Load from Tandem Axles [kip	os] 18.4
Temperature Derating Factor	1.000	Pavement Type: None	
Pipe Class: API 5L Electric Re	esistance Welded	Impact Factor Method: ASCE - Highway	
Young's Modulus for Steel [ksi]	30,000		
Poisson's Ratio for Steel	0.30		
Coefficient of Thermal Expansion	[per°F] 0.0000065	Safety Factor Applied: API 1102 Procedur	e
RESULTS			
Lie au Oliva a Francis		20 422 Maximum Circumforantial Stroca In	ail 22.27

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi] 33,	273
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi] 11,	223
Stiffness Factor for Earth Load Circumferential Stress	2,088	Maximum Radial Stress [psi] -1,4	140
Burial Factor for Earth Load Circumferential Stress	1.08	Total Effective Stress [psi] 30,	427
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi] 32,	500
Circumferential Stress from Earth Load [psi]	1,647		
Impact Factor	1.50	Stress [psi] Calculated Allowable PASS/F	AIL
Highway Stiffness Factor for Cyclic Circumferential	12.60	Hoop 29,423 32,500 PASS	
• .		Effective 30,427 32,500 PASS	
Highway Geometry Factor for Cyclic Circumferential	1.10	Girth Welds 2.118 6,000 PASS	

Highway Stiffness Factor for Cyclic Circumferential	12.60	Ноор	29,423	32,500	PASS
•		Effective	30,427	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.10	Girth Welds	2,118	6,000	PASS
Cyclic Circumferential Stress [psi]	2,923	Long. Welds	2,923	11,500	PASS
Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30	š			

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Highway Geometry Factor for Cyclic Longitudinal Stress 1.08

Cyclic Longitudinal Stress [psi]

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project	
Vermont Gas Systems	
Location	Date
Burlington, VT	5/24/2016

PIPE AND OPERATIONAL DATA:		SITE AND INSTALLATION DATA:	
Operating Pressure [psi]	1440	Soil Type: Stiff to very stiff clays and silts	
Location Class:	3	E' - Modulus of Soil Reaction [ksi] 1.0	
Operating Temperature [°F]	60.0	Er - Resilient Modulus [ksi] 10.0)
Pipe Outside Diameter [in]	12.75	Average Unit Weight of Soil [lb/ft³] 120.	.00
Pipe Wall Thickness [in]	0.312	Pipe Depth [ft] 3	
Pipe Grade: X65		Bored Diameter [in] 12.7	′ 5
Specified Minimum Yield Stress	65,000	InstallationTemperature [°F] 60.0)
Design Factor	0.50	Design Wheel Load from Single Axle [kips] 18	3.4
Longitudinal Joint Factor	1.0	Design Wheel Load from Tandem Axles [kips] 18	3.4
Temperature Derating Factor	1.000	Pavement Type: None	
Pipe Class: API 5L Electric Re	esistance Welded	Impact Factor Method: ASCE - Highway	
Young's Modulus for Steel [ksi]	30,000		
Poisson's Ratio for Steel	0.30		
Coefficient of Thermal Expansion	[per°F] 0.0000065	Safety Factor Applied: API 1102 Procedure	
RESULTS			

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	33,046
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	11,216
Stiffness Factor for Earth Load Circumferentia	al Stress 1,934	Maximum Radial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential S	stress 0.78	Total Effective Stress [psi]	30,216
Excavation Factor for Earth Load Circumferen	ntial Stress 0.83	Allowable Effective Stress [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,102		
		Participation of the second se	* *

Impact Factor	1.50	Stress [psi]	Calculated	Allowable	PASS/FAIL
Highway Stiffness Factor for Cyclic Circumferential	12.60	Ноор	29,423	32,500	PASS
•		Effective	30,216	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.22	Girth Welds	2,275	6,000	PASS
Cyclic Circumferential Stress [psi]	3,241	Long. Welds	3,241	11,500	PASS

Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16
Cyclic Longitudinal Stress [psi]	2,275

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project		
Vermont Gas Systems		
Location	Date	
Burlington, VT	5/24/2016	

·			
PIPE AND OPERATIONAL DATA	;	SITE AND INSTALLATION DATA:	
Operating Pressure [psi]	1440	Soil Type: Stiff to very stiff clays and silts	
Location Class:	3	E' - Modulus of Soil Reaction [ksi]	1.0
Operating Temperature [°F]	60.0	Er - Resilient Modulus [ksi]	10.0
Pipe Outside Diameter [in]	12.75	Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Wall Thickness [in]	0.312	Pipe Depth [ft]	4
Pipe Grade: X65		Bored Diameter [in]	12.75
Specified Minimum Yield Stress	65,000	InstallationTemperature [°F]	60.0
Design Factor	0.50	Design Wheel Load from Single Axle [kips]	18.4
Longitudinal Joint Factor	1.0	Design Wheel Load from Tandem Axles [ki	ps] 18.4
Temperature Derating Factor	1.000	Pavement Type: None	
Pipe Class: API 5L Electric Re	esistance Welded	Impact Factor Method: ASCE - Highway	
Young's Modulus for Steel [ksi]	30,000		
Poisson's Ratio for Steel	0.30	0.54 E. 4. A. II. 4. A. D. 4400 B	
Coefficient of Thermal Expansion	[per°F] 0.0000065	Safety Factor Applied: API 1102 Procedu	re
RESULTS			

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi] 33,	215
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi] 11,3	267
Stiffness Factor for Earth Load Circumferential Stress	1,934	Maximum Radial Stress [psi] -1,4	140
Burial Factor for Earth Load Circumferential Stress	0.90	Total Effective Stress [psi] 30,	366
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi] 32,	500
Circumferential Stress from Earth Load [psi]	1,271		
Impact Factor	1.50	Stress [psi] Calculated Allowable PASS/F	AIL
Highway Stiffness Factor for Cyclic Circumferential	12.60	Hoop 29,423 32,500 PASS	
		Effective 30,366 32,500 PASS	
Highway Geometry Factor for Cyclic Circumferential	1.22	Girth Welds 2,275 6,000 PASS	

3,241

Long. Welds 3,241

PASS

11,500

Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16
Cyclic Longitudinal Stress [psi]	2,275

Cyclic Circumferential Stress [psi]

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project		
Vermont Gas Systems		
Location	Date	
Burlington, VT	5/24/2016	

PIPE AND OPERATIONAL DATA	:	SITE AND INSTALLATION DATA:	
Operating Pressure [psi]	1440	Soil Type: Stiff to very stiff clays and silts	
Location Class:	3	E' - Modulus of Soil Reaction [ksi]	1.0
Operating Temperature [°F]	60.0	Er - Resilient Modulus [ksi]	10.0
Pipe Outside Diameter [in]	12.75	Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Wall Thickness [in]	0.312	Pipe Depth [ft]	5
Pipe Grade: X65		Bored Diameter [in]	12.75
Specified Minimum Yield Stress	65,000	InstallationTemperature [°F]	60.0
Design Factor	0.50	Design Wheel Load from Single Axle [kips]	18.4
Longitudinal Joint Factor	1.0	Design Wheel Load from Tandem Axles [kip	os] 18.4
Temperature Derating Factor	1.000	Pavement Type: None	
Pipe Class: API 5L Electric Re	esistance Welded	Impact Factor Method: ASCE - Highway	
Young's Modulus for Steel [ksi]	30,000		
Poisson's Ratio for Steel	0.30	14	
Coefficient of Thermal Expansion	[per°F] 0.0000065	Safety Factor Applied: API 1102 Procedur	е
RESULTS			

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi] 33,010	
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi] 11,144	
Stiffness Factor for Earth Load Circumferential Stress	1,934	Maximum Radial Stress [psi] -1,440	
Burial Factor for Earth Load Circumferential Stress	0.98	Total Effective Stress [psi] 30,193	
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi] 32,500	
Circumferential Stress from Earth Load [psi]	1,384		
Impact Factor	1.50	Stress [psi] Calculated Allowable PASS/FAIL	
	40.00	Hoop 29 423 32 500 PASS	1

impact ractor	1.50	Otress [bail	Calculated	MICWADIC	I AOON AIL
Highway Stiffness Factor for Cyclic Circumferential	12.60	Ноор	29,423	32,500	PASS
•		Effective	30,193	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.10	Girth Welds	2,118	6,000	PASS
Cyclic Circumferential Stress [psi]	2,923	Long. Welds	2,923	11,500	PASS
Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30				

Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30
Highway Geometry Factor for Cyclic Longitudinal Stress	1.08
Cyclic Longitudinal Stress [psi]	2,118

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project		
Vermont Gas Systems		
Location	Date	
Burlington, VT	5/24/2016	

Al 1 1702 - Gas i ipellile	Crossing riigh	way						
PIPE AND OPERATIONAL DATA:		SITE A	ND IN	ISTALLAT	TION DATA	\ :		
Operating Pressure [psi]	1440	Soil Typ	e:	Medium	dense sand	ls and grav	/els	
Location Class:	3	E' - Mod	dulus	of Soil Re	eaction [ksi]		1.0	
Operating Temperature [°F]	60.0	Er - Res	silient	Modulus	[ksi]		10.0	
Pipe Outside Diameter [in]	12.75	Average	e Unit	: Weight c	of Soil [lb/ft³]	l	120.00	
Pipe Wall Thickness [in]	0.312	Pipe De	epth [1	ft]		-	3	
Pipe Grade: X65		Bored [Diame	eter [in]			12.75	
Specified Minimum Yield Stress	65,000	Installat	ionTe	emperatur	e [°F]		60.0	
Design Factor	0.50	Design	Whe	el Load fro	om Single A	xle [kips]	18.4	
Longitudinal Joint Factor	1.0	Design	Whe	el Load fro	om Tandem	n Axles [kip	os] 18.4	
Temperature Derating Factor	1.000	Paveme	ent Ty	/pe: None	e			
Pipe Class: API 5L Electric Res	sistance Welded	Impact	Facto	r Method:	ASCE - H	ighway		
Young's Modulus for Steel [ksi]	30,000							
Poisson's Ratio for Steel	0.30	0.64		A 1: 1	A DI 4400	. D I		
Coefficient of Thermal Expansion [per°F] 0.0000065	Safety	-acto	r Applied:	API 1102	2 Procedur	е	
RESULTS								
Hoop Stress [psi]		29,423	Max	imum Circ	cumferentia	l Stress [p	si] 33,1	16
Allowable Hoop Stress [psi]		32,500	Max	imum Lon	gitudinal St	ress [psi]	11,23	38
Stiffness Factor for Earth Load Circ	cumferential Stress	1,934	Max	imum Rad	dial Stress [psi]	-1,44	10
Burial Factor for Earth Load Circum	nferential Stress	0.83	Tota	I Effective	Stress [psi	i]	30,27	78
Excavation Factor for Earth Load C	Circumferential Stress	0.83	Allov	vable Effe	ctive Stress	s [psi]	32,50	0 0
Circumferential Stress from Earth L	₋oad [psi]	1,172						
Impact Factor		1.50		ss [psi]	Calculated			\IL
Highway Stiffness Factor for Cyclic	Circumferential	12.60	Hoop		29,423	32,500	PASS	

		Effective	30,278	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.22	Girth Welds	2,275	6,000	PASS
Cyclic Circumferential Stress [psi]	3,241	Long. Welds	3,241	11,500	PASS
Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30				

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Highway Geometry Factor for Cyclic Longitudinal Stress 1.16

Cyclic Longitudinal Stress [psi]

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project	
Vermont Gas Systems	
Location	Date
Burlington, VT	5/24/2016

PIPE AND OPERATIONAL DATA:		SITE A	ND IN	ISTALLATIO	ON DATA:		
Operating Pressure [psi]	1440	Soil Typ	e:	Medium de	ense sands and grave	els	
Location Class:	3	E' - Mod	dulus	of Soil Rea	ction [ksi]	1.0	
Operating Temperature [°F]	60.0	Er - Res	silient	Modulus [k	(Si]	10.0)
Pipe Outside Diameter [in]	12.75	Average	e Unit	: Weight of	Soil [lb/ft³]	120.	.00
Pipe Wall Thickness [in]	0.312	Pipe De	pth [f	ft]		4	
Pipe Grade: X65		Bored D)iame	eter [in]		12.7	'5
Specified Minimum Yield Stress	65,000	Installat	ionTe	emperature	[°F]	60.0)
Design Factor	0.50	Design	Whee	el Load fron	n Single Axle [kips]	18	3.4
Longitudinal Joint Factor	1.0	Design	Whee	el Load fron	n Tandem Axles [kip	s] 18	3.4
Temperature Derating Factor	1.000	Paveme	ent Ty	/pe: None			
Pipe Class: API 5L Electric Res	sistance Welded	Impact	Facto	or Method: /	ASCE - Highway		
Young's Modulus for Steel [ksi]	30,000						
Poisson's Ratio for Steel	0.30						
Coefficient of Thermal Expansion [per°F] 0.0000065	Safety I	-acto	r Applied:	API 1102 Procedure	;	
RESULTS					•		
Hoop Stress [psi]		29,423	Maxi	imum Circu	mferential Stress [ps	i] 3	33,314
Allowable Hoop Stress [psi]		32,500	Maxi	imum Long	itudinal Stress [psi]	1	11,297
Stiffness Factor for Earth Load Circ	cumferential Stress	1,934	Maxi	imum Radia	al Stress [psi]	-	1,440
Burial Factor for Earth Load Circum	nferential Stress	0.97	Tota	l Effective S	Stress [psi]	3	30,453
Excavation Factor for Earth Load C	Circumferential Stress	0.83	Allov	vable Effec	tive Stress [psi]	3	32,500

Allowable Hoop Stress [psi]	32,500
Stiffness Factor for Earth Load Circumferential Stress	1,934
Burial Factor for Earth Load Circumferential Stress	0.97
Excavation Factor for Earth Load Circumferential Stress	0.83
Circumferential Stress from Earth Load [psi]	1,370
Impact Factor	1.50
Highway Stiffness Factor for Cyclic Circumferential	12.60
Highway Geometry Factor for Cyclic Circumferential	1.22
Cyclic Circumferential Stress [psi]	3,241
Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30

Highway Geometry Factor for Cyclic Longitudinal Stress 1.16

Cyclic Longitudinal Stress [psi]

Stress [psi]	Calculated	Allowable	PASS/FAIL
Ноор	29,423	32,500	PASS
Effective	30,453	32,500	PASS
Girth Welds	2,275	6,000	PASS
Long. Welds	3,241	11,500	PASS

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe Approved By Revision: 13.0.1

Project		
Vermont Gas Systems		
Location	Date	-
Burlington, VT	5/24/2016	

	PIPE AND OPERATIONAL DATA:		SITE A	ND IN	ISTALLAT	TION DATA		
	Operating Pressure [psi]	1440	Soil Typ	e:	Medium	dense sand	s and grav	els
	Location Class:	3	E' - Mod	lulus	of Soil Re	eaction [ksi]		1.0
	Operating Temperature [°F]	60.0	Er - Res	silient	Modulus	[ksi]		10.0
	Pipe Outside Diameter [in]	12.75	Average	e Unit	: Weight c	of Soil [lb/ft³]		120.00
	Pipe Wall Thickness [in]	0.312	Pipe De	pth [1	ft]			5
	Pipe Grade: X65		Bored D)iame	eter [in]			12.75
	Specified Minimum Yield Stress	65,000	Installat	ionTe	emperatur	e [°F]		60.0
	Design Factor	0.50	Design	Whe	el Load fro	om Single A	xle [kips]	18.4
	Longitudinal Joint Factor	1.0	Design	Whe	el Load fro	om Tandem	Axles [kip	s] 18.4
	Temperature Derating Factor	1.000	Paveme	ent Ty	pe: None	€		
	Pipe Class: API 5L Electric Res	sistance Welded	Impact	Facto	r Method	: ASCE - H	ighway	
	Young's Modulus for Steel [ksi]	30,000						
00	Poisson's Ratio for Steel	0.30						
	Coefficient of Thermal Expansion [per°F] 0.0000065	Safety F	-acto	r Applied:	API 1102	! Procedure	€
	RESULTS				TWE			
	Hoop Stress [psi]		29,423	Max	imum Circ	cumferentia	Stress [ps	si] 33,151
	Allowable Hoop Stress [psi]		32,500	Max	imum Lor	igitudinal St	ress [psi]	11,186
	Stiffness Factor for Earth Load Circ	cumferential Stress	1,934	Max	imum Rad	dial Stress [psi]	-1,440
	Burial Factor for Earth Load Circum	nferential Stress	1.08	Tota	I Effective	Stress [ps	i]	30,318
	Excavation Factor for Earth Load C	ircumferential Stress	0.83	Allov	vable Effe	ective Stress	s [psi]	32,500
	Circumferential Stress from Earth L	oad [psi]	1,525					
	Impact Factor		1.50		ss [psi]	Calculated	- A	
	Highway Stiffness Factor for Cyclic	Circumferential	12.60	Hoop	ctive	29,423 30,318		PASS PASS
	Highway Geometry Factor for Cycli	c Circumferential	1.10) Welds	2,118		PASS
	Cyclic Circumferential Stress [psi]		2,923			2,923		PASS
	Highway Stiffness Factor for Cyclic	Longitudinal Stress	9.30					
	Highway Geometry Factor for Cycli	c Longitudinal Stress	1.08					
	Cyclic Longitudinal Stress [psi]		2,118					

Notes: Open cut construction, calculations run using HS-20 loading + 15%

H	Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1

Project	
Vermont Gas Systems	
Location	Date
Burlington, VT	5/24/2016

PIPE AND OPERATIONAL DATA:			SITE AND INSTALLATION DATA:				
Operating Pressure [psi]	1440	Soil Ty	pe:	Dense to	very dense	e sands an	d gravels
Location Class:	3	E' - Mo	dulus	of Soil Re	eaction [ksi]		2.0
Operating Temperature [°F]	60.0	Er - Re	silien	t Modulus	[ksi]		20.0
Pipe Outside Diameter [in]	12.75	Averag	e Uni	t Weight o	of Soil [lb/ft³]]	120.00
Pipe Wall Thickness [in]	0.312	Pipe D	epth [[ft]			3
Pipe Grade: X65		Bored	Diam	eter [in]			12.75
Specified Minimum Yield Stress	65,000	Installa	tionT	emperatu	re [°F]		60.0
Design Factor	0.50	Design	Whe	el Load fr	om Single A	xle [kips]	18.4
Longitudinal Joint Factor	1.0	Design	Whe	el Load fr	om Tandem	n Axles [kip	os] 18.4
Temperature Derating Factor	1.000	Pavem	ent T	ype: Non	е		
Pipe Class: API 5L Electric Re	sistance Welded	Impact	Fact	or Method	: ASCE - H	ighway	
Young's Modulus for Steel [ksi]	30,000						
Poisson's Ratio for Steel	0.30						
Coefficient of Thermal Expansion	[per°F] 0.0000065	Safety	Facto	or Applied:	API 1102	2 Procedur	e
RESULTS							
Hoop Stress [psi]		29,423	Max	dimum Circ	cumferentia	l Stress [p	si] 32,060
Allowable Hoop Stress [psi]		32,500	Max	imum Lor	ngitudinal St	tress [psi]	10,417
Stiffness Factor for Earth Load Cir	cumferential Stress	1,693	Max	dimum Ra	dial Stress [[psi]	-1,440
Burial Factor for Earth Load Circu	mferential Stress	0.78	Tota	al Effective	e Stress [ps	i] "	29,422
Excavation Factor for Earth Load	Circumferential Stress	0.83	Allo	wable Effe	ective Stress	s [psi]	32,500
Circumferential Stress from Earth	Load [psi]	964					
Impact Factor		1.50		ess [psi]			PASS/FAIL
Highway Stiffness Factor for Cycli	c Circumferential	9.30	Hoo			32,500 32,500	PASS
Highway Geometry Factor for Cyc	lic Circumferential	1.22		ctive h Welds	29,422 1,517	6,000	PASS PASS
Cyclic Circumferential Stress [psi]		2,393		g. Welds	2,393	11,500	PASS
Highway Stiffness Factor for Cycli	c Longitudinal Stress	6.20					
Highway Geometry Factor for Cyc	lic Longitudinal Stress	1.16					
Cyclic Longitudinal Stress [psi]		1,517					

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project			
Vermont Gas Systems			
Location	Date	21	
Burlington, VT	5/24/2016		

, a first sacripsing inginity						
PIPE AND OPERATIONAL DATA:		SITE A	ND INSTALLAT	TION DATA	:	
Operating Pressure [psi]	1440	Soil Typ	e: Dense to	very dense	sands an	d gravels
Location Class:	3	E' - Mod	dulus of Soil Re	eaction [ksi]		2.0
Operating Temperature [°F]	60.0	Er - Res	silient Modulus	[ksi]		20.0
Pipe Outside Diameter [in]	12.75	Average	e Unit Weight o	of Soil [lb/ft³]		120.00
Pipe Wall Thickness [in]	0.312	Pipe De	epth [ft]			4
Pipe Grade: X65		Bored [Diameter [in]			12.75
Specified Minimum Yield Stress	65,000	Installat	tionTemperatur	e [°F]		60.0
Design Factor	0.50	Design	Wheel Load fro	om Single A	xle [kips]	18.4
Longitudinal Joint Factor	1.0	Design	Wheel Load fro	om Tandem	Axles [kip	s] 18.4
Temperature Derating Factor	1.000	Paveme	ent Type: None	е		
Pipe Class: API 5L Electric Res	sistance Welded	Impact	Factor Method	: ASCE - H	ighway	
Young's Modulus for Steel [ksi]	30,000					
Poisson's Ratio for Steel	0.30			A DI 4400		
Coefficient of Thermal Expansion [per°F] 0.0000065	Safety I	Factor Applied:	API 1102	Procedur	е
RESULTS						
Hoop Stress [psi]		29,423	Maximum Circ	cumferentia	Stress [p	si] 32,209
Allowable Hoop Stress [psi]		32,500	Maximum Lor	ngitudinal St	ress [psi]	10,462
Stiffness Factor for Earth Load Circ	cumferential Stress	1,693	Maximum Rad	dial Stress [psi]	-1,440
Burial Factor for Earth Load Circun	nferential Stress	0.90	Total Effective	e Stress [ps	i]	29,554
Excavation Factor for Earth Load C	Circumferential Stress	0.83	Allowable Effe	ective Stress	s [psi]	32,500
Circumferential Stress from Earth I	_oad [psi]	1,113				
Impact Factor	*	1.50	Stress [psi]			PASS/FAIL
Highway Stiffness Factor for Cyclic	Circumferential	9.30	Hoop Effective	29,423 29,554	32,500 32,500	PASS PASS
Highway Geometry Factor for Cycli	ic Circumferential	1.22	Girth Welds	1,517	6,000	PASS
Cyclic Circumferential Stress [psi]		2,393	Long. Welds	2,393	11,500	PASS
Highway Stiffness Factor for Cyclic	Longitudinal Stress	6.20				
Highway Geometry Factor for Cycli	ic Longitudinal Stress	1.16				
Cyclic Longitudinal Stress [psi]		1,517				

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe Approved By Revision: 13.0.1

Project			
Vermont Gas Systems			
Location	Date	=	
Burlington, VT	5/24/2016		

API 1102 - Gas Pipeline Crossing Highway							
PIPE AND OPERATIONAL DATA:		SITE AND INSTALLATION DATA:					
Operating Pressure [psi]	1440	Soil Typ	e:	Dense to	very dense	sands an	d gravels
Location Class:	3	E' - Mod	lulus	of Soil Re	action [ksi]		2.0
Operating Temperature [°F]	30.0	Er - Res	ilient	t Modulus	[ksi]		20.0
Pipe Outside Diameter [in]	12.75	Average	. Uni	t Weight o	f Soil [lb/ft³]]	120.00
Pipe Wall Thickness [in]	0.312	Pipe De	pth [ft]			5
Pipe Grade: X65		Bored D	iame	eter [in]			12.75
Specified Minimum Yield Stress	35,000	Installati	ionTe	emperatur	e [°F]		60.0
Design Factor 0	0.50	Design \	Whe	el Load fro	om Single A	xle [kips]	18.4
Longitudinal Joint Factor	1.0	Design \	Whe	el Load fro	om Tandem	n Axles [kip	os] 18.4
Temperature Derating Factor	1.000	Paveme	ent T	ype: None)		
Pipe Class: API 5L Electric Resis	stance Welded	Impact I	Facto	or Method:	ASCE - H	ighway	
Young's Modulus for Steel [ksi]	30,000						
Poisson's Ratio for Steel	0.30	Cafati F		.r Amaliadı	ADI 1100	Droodur	_
Coefficient of Thermal Expansion [per°F] 0.0000065		Safety F	acto	or Applied:	API 1102	Procedur	e
RESULTS							
Hoop Stress [psi]		29,423	Max	imum Circ	cumferentia	l Stress [p	si] 32,071
Allowable Hoop Stress [psi]		32,500	Max	imum Lon	gitudinal St	tress [psi]	10,386
Stiffness Factor for Earth Load Circu	ımferential Stress	1,693	Maximum Radial Stress [psi] -1,440		-1,440		
Burial Factor for Earth Load Circumf	erential Stress	0.98	Total Effective Stress [psi] 29,43		29,437		
Excavation Factor for Earth Load Cir	cumferential Stress	0.83	Allo	wable Effe	ctive Stres	s [psi]	32,500
Circumferential Stress from Earth Lo	oad [psi]	1,211					
Impact Factor		1.50	4.00			Contract Con	PASS/FAIL
Highway Stiffness Factor for Cyclic Circumferential		9.30	Hoo Effe	ctive	29,423 29,437	32,500 32,500	PASS PASS
Highway Geometry Factor for Cyclic Circumferential		1.10		h Welds	1,412	6,000	PASS
Cyclic Circumferential Stress [psi]		2,157	Lon	g. Welds	2,157	11,500	PASS
Highway Stiffness Factor for Cyclic Longitudinal Stress		6.20					
Highway Geometry Factor for Cyclic Longitudinal Stress		1.08					
Cyclic Longitudinal Stress [psi]		1,412					

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe Approved By Revision: 13.0.1

From: Hartman, Daniel J < Daniel.Hartman@mottmac.com>

Sent: Tuesday, June 20, 2017 4:46 PM

To: John St.Hilaire

Cc: Wojnas, Joseph E; Wolf, Brian D; Kibbe, Kelsey E; Guthrie, Karen M

Subject: RE: Vermont Gas Systems - GPTC Calculations

The calculation was run using assuming a fully saturated clay. It would have an effect on the hoop stress from the applied load.

Daniel J. Hartman PE | Project Engineer

T+1 (413) 315 2417 F+1 (413) 535 0136

Daniel.Hartman@mottmac.com

From: John St.Hilaire [mailto:jsthilaire@vermontgas.com]

Sent: Tuesday, June 20, 2017 4:41 PM

To: Hartman, Daniel J < Daniel. Hartman@mottmac.com>

Cc: Wojnas, Joseph E < Joseph. Wojnas@mottmac.com>; Wolf, Brian D < Brian. Wolf@mottmac.com>; Kibbe, Kelsey E

<Kelsey.Kibbe@mottmac.com>; Guthrie, Karen M <Karen.Guthrie@mottmac.com>

Subject: Re: Vermont Gas Systems - GPTC Calculations

Sorry one las qu strong. We found some documentation that the soil type is "LK" meaning Livingston clay - flooded. Which category of the original analysis does LK fit into?

Sent from my iPad

On Jun 20, 2017, at 9:11 AM, Hartman, Daniel J < Daniel. Hartman@mottmac.com > wrote:

Hey John,

The previous calculations we ran were using the 2' depth of cover and produced effective stresses less than allowable.

I just ran a scenario where we would have 1' of cover with the 25 kip load (the calculation will not allow a trench depth/width ratio less than .5 so I changed the trench width from 3' to 2' now that the cover is down to 1'). The results produced a hoop stress of 71,752 psi from external loading alone and a total hoop stress of 101,175 psi which exceeds the allowable by a large margin without even adding in the S2 and S3 principal stresses. Long story short the calculations pass for up to a depth of 2' but that is the cutoff. I reduced the load from 25kips down to 10 kips and it still fails at the 1' of cover.

Hopefully this answers your question. Feel free to reach back out should you need any further clarification or evaluation.

Kind Regards,

-Danny

Daniel J. Hartman PE | Project Engineer

Daniel.Hartman@mottmac.com

From: John St. Hilaire [mailto:jsthilaire@vermontgas.com]

Sent: Monday, June 19, 2017 7:14 AM

To: Hartman, Daniel J < Daniel J < Daniel.Hartman@mottmac.com; Wojnas, Joseph E

<Joseph.Wojnas@mottmac.com>

Cc: Wolf, Brian D <Brian.Wolf@mottmac.com>; Kibbe, Kelsey E <Kelsey.Kibbe@mottmac.com>; Guthrie,

Karen M < Karen. Guthrie@mottmac.com>

Subject: RE: Vermont Gas Systems - GPTC Calculations

Hi Daniel

Quick follow –up. I am being asked if we are good at 5′, 4′, 3′, and now 2′, what is the level where this calculation would show we exceed the total stress? At what depth would the calc exceed 58,500?

Is this something easy to do?

Thanks, John

From: Hartman, Daniel J [mailto:Daniel.Hartman@mottmac.com]

Sent: Wednesday, May 10, 2017 4:54 PM **To:** John St.Hilaire; Wojnas, Joseph E

Cc: Wolf, Brian D; Kibbe, Kelsey E; Guthrie, Karen M **Subject:** RE: Vermont Gas Systems - GPTC Calculations

Hey John,

Please see below for the calculation of the total effective stress that results from the wheel load applied using the GPTC method. Feel free to reach out with any questions.

From the GPTC calc we get the combined total stress for the principal plane S1 (hoop stress from internal pressure + hoop stress from applied load)

$$S1 = 49,629 psi$$

From the below calculation we get the longitudinal stress which represents the principal stress S2

Design Temperature
$$-T_d = 60$$
 °F
Installation Temperature $-T_i = 80$ °F
Poisson's Ratio $-v = 0.30$
Thermal Coefficient of Steel $-\alpha = 6.7 \times 10^{-6}$ 1/°F

Young's Modulus – $E = 29 \times 10^6$ psi

SL=(vSH-Eα(Td-Ti)) from ASME B31.8 Clause 833.3 SL=(.3*49,629 -29*106*6.7*10-6(60-80)) SL= 18,774.7 psi

S2 = 18,774.7 psi

The maximum radial stress results from the negative of the MAOP and represents the principal stress S3

S3 = -1440

The simplified Von Mises equation for principal stresses is used to translate the three principal stresses into the equivalent tensile stress (total effective stress). Design factor F from ASME B31.8 Clause 833.4b

Seff=12[S1-S22+S2-S32+S3-S12]

Seff=12[49,629 -18,774.7 2+18,774.7 --14402+-1440-49,629 2]

Seff=44,545.85

Seff≤SMYS×F

44,545.85≤*65,000*×(*.*9)

44,545.85≤58,500 OK

Daniel J. Hartman PE | Project Engineer

T +1 (413) 315 2417 F +1 (413) 535 0136 Daniel.Hartman@mottmac.com

From: John St. Hilaire [mailto:jsthilaire@vermontgas.com]

Sent: Wednesday, May 10, 2017 8:12 AM

To: Wojnas, Joseph E < <u>Joseph.Wojnas@mottmac.com</u>>

Cc: Wolf, Brian D < Brian.Wolf@mottmac.com; Hartman, Daniel J < Daniel.Hartman@mottmac.com; Kibbe, Kelsey E < Kelsey.Kibbe@mottmac.com; Guthrie, Karen M < Karen.Guthrie@mottmac.com;

Subject: RE: Vermont Gas Systems - GPTC Calculations

Hi Joe

Quick question. In the original analysis the result table pulled in "total effective stress". In the additional analysis I do not find this number. How would I correlate the two analysis?

Thanks, John **From:** Wojnas, Joseph E [mailto:Joseph.Wojnas@mottmac.com]

Sent: Monday, May 01, 2017 11:56 AM

To: John St. Hilaire

Cc: Wolf, Brian D; Hartman, Daniel J; Kibbe, Kelsey E; Guthrie, Karen M

Subject: FW: Vermont Gas Systems - GPTC Calculations

John,

Please see the summary below. Kelsey performed the work under the direction of one of our professional engineers. In summary, the pipe looks good.

In talking with the staff the total effort appears to take less than 4 hours. Timesheets are developed at the end of the week where the exact time is collected. With your permission I was going to honor the rates from the Addison Natural Gas Project contract dated January 9, 2015.

Please do not hesitate to contact us with any other questions and/or comments you may have.

Thank you

Joe

From: Kibbe, Kelsey E

Sent: Monday, May 1, 2017 9:48 AM

To: Wojnas, Joseph E < <u>Joseph.Wojnas@mottmac.com</u>>
Cc: Hartman, Daniel J < <u>Daniel.Hartman@mottmac.com</u>>
Subject: Vermont Gas Systems - GPTC Calculations

Hi Joe -

As requested, I've attached two calculations using 2' depth of cover and the weakest soil type. One calculation was run using 1440 psig internal pressure, the other was run using no internal pressure. **Both scenarios pass, the total calculated combined stress for each is less than 90% SMYS.**

Note: the calculations were performed using the GPTC Guide, as 2' depth of cover is out of scope for the API 1102 (method used for previous calculations). A more conservative design wheel load of 25 kips was used.

Let me know if you need anything further.

Thanks,

Kelsey E. Kibbe

Engineer II, EIT

T +1 (413) 315 2042 C +1 (413) 530 0799 F +1 (413) 535 0136

kelsey.kibbe@mottmac.com

<image020.png>

Mott MacDonald 134 Capital Drive

Suite D

West Springfield MA 01089 United States of America

Website | Twitter | LinkedIn | Facebook | YouTube

<VTGas_GPTC Calc_1ftcover.pdf>

Attachment B – Additional CEPA & GPTC Calculations

Results for Surface Loading Calculation

PIPELINE INFORMATION:	Vermont Gas
PIPELINE LOCATION:	Burlington, VT
VEHICLE INFORMATION:	HS20+15%
VEHICLE TYPE:	Wheel: 3-Axles, 6-Wheels
DATE:	6/14/2021 17:16

	G	ENERAL INPUTS	VEHICLE INPUTS	<u>s</u>	LOCATION OF MAXIMUM LOAD
D =	12.75 inches	(Outside Diameter)	Axle or Track Separation 1:	14 ft	The maximum pressure
t =	0.312 inches	(Wall Thickness)	Axle Separation 2 :	14 ft	exerted on the surface of
P _{internal} =	1440 psig	(Maximum Operating Pressure)	Axle Width :	6 ft	the pipe due to vehicle
SMYS =	65000 psi	(Specified Minimum Yield Strength)	Track Length :	N/A ft	point load occurs:
ΔT =	0 °F	(Temperature Differential)	Axle 1 or Track Vehicle Load :	9200 lbs	
ρ =	120 lb/ft ³	(Density)	Contact Width 1:	20 inches	Under the middle tires.
H =	2 ft	(Depth of Cover)	Tire Pressure 1:	100 psi	
θ =	30 degrees	(Bedding Angle)	Axle Load 2 :	36800 lbs	
E' =	500 psi	(Modulus of Soil Reaction)	Contact Width 2:	20 inches	
IF =	1.50	(Impact Factor)	Tire Pressure 2 :	100 psi	
Soil Load Eq	quation: Prism Lo	oad Equation	Axle Load 3 :	36800 lbs	
	φ = N/A	A degrees	Contact Width 3:	20 inches	
Equivalent S	Stress Equation:	Tresca Equation	Tire Pressure 3 :	100 psi	
			Measurement Point X-coord :	N/A inches	
			Measurement Point Y-coord:	N/A inches	

CALCULATED ST	TRESS DATA	<u>Variable Description</u>	Pipeline Regulatory Code	Pass / Fail
Hoop Stress (σ _H):				
$\sigma_{H_Internal_MOP} =$	29423 psi	< Internal Pressure @ MOP		
$\sigma_{H_Live_Zero} =$	21158 psi	< Live Load @ Zero pressure		
$\sigma_{H_Live_MOP} =$	10788 psi	< Live Load @ MOP		
σ _{H_Total_Zero} =	22935 psi	< Total Hoop Stress @ Zero pressure		
$\sigma_{H_Total_MOP} =$	41117 psi	< Total Hoop Stress @ MOP		
$\sigma_{H_{\%SMYS_Zero}} =$	35.3%	< Hoop Stress %SMYS @ Zero pressure	ASME B31.8-2010	PASS
$\sigma_{H_\%SMYS_MOP} =$	63.3%	< Hoop Stress %SMYS @ MOP	ASME B31.8-2010	PASS
Longitudinal Stress (σι):	-		
$\sigma_{L_Live_Zero} =$	13741 psi	< Live Load @ Zero pressure		
$\sigma_{L_Live_MOP} =$	10380 psi	< Live Load @ MOP		
$\sigma_{L_Total_Zero} =$	14274 psi	< Total Longitudinal Stress @ Zero pressure		
$\sigma_{L_Total_MOP} =$	19479 psi	< Total Longitudinal Stress @ MOP		
$\sigma_{L_{SMYS_Zero}} =$	22.0%	< Longitudinal Stress %SMYS @ Zero pressure	ASME B31.8-2010	PASS
$\sigma_{L_{\%SMYS_MOP}} =$	30.0%	< Longitudinal Stress %SMYS @ MOP	ASME B31.8-2010	PASS
Equivalent Stress (σ_{E}):		+		
$\sigma_{E_Zero} =$	37210 psi	< Equivalent Stress @ Zero pressure		
σ _{E MOP} =	42942 psi	< Equivalent Stress @ MOP		
σ _{E_%SMYS_Zero} =	57.2%	< Equivalent Stress %SMYS @ Zero pressure	ASME B31.8-2010	PASS
$\sigma_{E_{\%SMYS_MOP}} =$	66.1%	< Equivalent Stress %SMYS @ MOP	ASME B31.8-2010	PASS
i				

GENERAL NOTES:

- Refer to "Table 3-Fatigue Endurance Limits, S_{FG} and S_{FL} for Various Steel Grades" on page 18 of API Recommended Practice 1102 when performing fatigue check calculations. This table has also been reproduced courtesy of the American Petroleum Institute on the "API RP 1102 Fatigue Table" tab to provide the user with a quick reference.

Results for Surface Loading Calculation

PIPELINE INFORMATION:	Vermont Gas
PIPELINE LOCATION:	Burlington, VT
VEHICLE INFORMATION:	HS20+15%
VEHICLE TYPE:	Wheel: 3-Axles, 6-Wheels
DATE:	6/14/2021 8:31

	G	ENERAL INPUTS	VEHICLE INPUTS	<u>s</u>	LOCATION OF MAXIMUM LOAD
D =	12.75 inches	(Outside Diameter)	Axle or Track Separation 1:	14 ft	The maximum pressure
t =	0.312 inches	(Wall Thickness)	Axle Separation 2 :	14 ft	exerted on the surface of
P _{internal} =	1440 psig	(Maximum Operating Pressure)	Axle Width :	6 ft	the pipe due to vehicle
SMYS =	65000 psi	(Specified Minimum Yield Strength)	Track Length :	N/A ft	point load occurs:
ΔT =	0 °F	(Temperature Differential)	Axle 1 or Track Vehicle Load :	9200 lbs	
ρ =	120 lb/ft ³	(Density)	Contact Width 1:	20 inches	Under the middle tires.
H =	2 ft	(Depth of Cover)	Tire Pressure 1:	100 psi	
θ =	30 degrees	(Bedding Angle)	Axle Load 2 :	36800 lbs	
E' =	100 psi	(Modulus of Soil Reaction)	Contact Width 2:	20 inches	
IF =	1.50	(Impact Factor)	Tire Pressure 2 :	100 psi	
Soil Load Eq	quation: Prism Lo	oad Equation	Axle Load 3 :	36800 lbs	
	φ = N/A	A degrees	Contact Width 3:	20 inches	
Equivalent S	Stress Equation:	Tresca Equation	Tire Pressure 3 :	100 psi	
			Measurement Point X-coord :	N/A inches	
			Measurement Point Y-coord:	N/A inches	

CALCULATED ST	TRESS DATA	<u>Variable Description</u>	Pipeline Regulatory Code	Pass / Fail
Hoop Stress (σ _H):				
$\sigma_{H_Internal_MOP} =$	29423 psi	< Internal Pressure @ MOP		
$\sigma_{H_Live_Zero} =$	22884 psi	< Live Load @ Zero pressure		
$\sigma_{H_Live_MOP} =$	11219 psi	< Live Load @ MOP		
$\sigma_{H_Total_Zero} =$	24806 psi	< Total Hoop Stress @ Zero pressure		
$\sigma_{H_Total_MOP} =$	41585 psi	< Total Hoop Stress @ MOP		
σ _{H_%SMYS_Zero} =	38.2%	< Hoop Stress %SMYS @ Zero pressure	ASME B31.8-2010	PASS
$\sigma_{H_\%SMYS_MOP} =$	64.0%	< Hoop Stress %SMYS @ MOP	ASME B31.8-2010	PASS
Longitudinal Stress (σι):			
$\sigma_{L_Live_Zero} =$	18303 psi	< Live Load @ Zero pressure		
$\sigma_{L_Live_MOP} =$	14522 psi	< Live Load @ MOP		
$\sigma_{L_Total_Zero} =$	18879 psi	< Total Longitudinal Stress @ Zero pressure		
$\sigma_{L_Total_MOP} =$	23632 psi	< Total Longitudinal Stress @ MOP		
$\sigma_{L_{SMYS}Zero} =$	29.0%	< Longitudinal Stress %SMYS @ Zero pressure	ASME B31.8-2010	PASS
$\sigma_{L_\%SMYS_MOP} =$	36.4%	< Longitudinal Stress %SMYS @ MOP	ASME B31.8-2010	PASS
Equivalent Stress (σ _E):				
σ _{E_Zero} =	43685 psi	< Equivalent Stress @ Zero pressure		
$\sigma_{E_MOP}^-$ =	47563 psi	< Equivalent Stress @ MOP		
σ _{E_%SMYS_Zero} =	67.2%	< Equivalent Stress %SMYS @ Zero pressure	ASME B31.8-2010	PASS
σ _{E_%SMYS_MOP} =	73.2%	< Equivalent Stress %SMYS @ MOP	ASME B31.8-2010	PASS

GENERAL NOTES:

- Refer to "Table 3-Fatigue Endurance Limits, S_{FG} and S_{FL} for Various Steel Grades" on page 18 of API Recommended Practice 1102 when performing fatigue check calculations. This table has also been reproduced courtesy of the American Petroleum Institute on the "API RP 1102 Fatigue Table" tab to provide the user with a quick reference.

Project **VGS** Location Date Burlington, VT 6/1/2021

Design of Uncased Pipeline Crossings - GPTC Appendix G-192-15

PIPE AND CROSSING DATA:	RESULTS OF CALCULATION:
FIFE AND CROSSING DATA.	RESULTS OF CALCULATION.

Nominal Pipe Size	12 3/4	Load Coefficient	0.474
Nominal Outside Diameter [in.]	12.75	Total External Load [lbs/lineal inch of pipe]	367.0
Nominal Wall Thickness [in.]	0.312	Hoop Stress due to Internal Pressure [psi]	29,423
Grade	X65	Hoop Stress due to External Loading [psi]	16,442
Specified Minimum Yield Strength [psi]	65,000	Total Calculated Combined Stress [psi]	45.865
Design Factor	0.50	Total Calculated Combined Stress [psi]	45,605
Longitudinal Joint Factor	1.0	Note: The total calculated combined stre	ess
Temperature Derating Factor	1.000	should not exceed 100% of SMYS.	

30,000,000

Unit Weight of Soil [lbs/ft³]	120
Deflection Parameter	0.108
Bending Parameter	0.235
Impact Factor	1.5
Pipeline Internal Pressure [psig]	1440
Wheel Load [lbs]	18400

Modulus of Elasticity for Steel [psi]

Width of Pipe Trench or Diameter of Bore [ft.] 4

Height of Soil over Pipe [ft.]

Uniform Support Under Pipe [°] and Crossing Conditions: 30° - Open Trench

Soil Type: Extreme maximum for clay (completly saturated).

Notes:

Reference: GPTC - Guide for Gas Transmission and Distribution Systems, Appendix G-192-15, A.G.A.

Prepared By	John Smith	Approved By	Revision: 10.0.0
-------------	------------	-------------	------------------