https://pipeeng.com/CEPA_calc.html

Project	ANGP 1.5', 30 deg., E'=100	Developer	GRL
Date	2021-10-03	Approver	
Revision	1	Reviewer	

This calculation tool was developed using equations and methods contained in the final report of "Development of a Pipeline Surface Loading Screening Process & Assessment of Surface Load Dispersing Methods" published by David J. Warman, etc. This report was developed by Kiefner & Associates, Inc for Canadian Energy Pipeline Association (CEPA) to provide a practical method which can determine the potential loading effects of the temporary crossing by vehicles and equipment in locations without established roads. It is also very useful to verify pipe stresses when cover depths or surface load exceeds limits embodied in API RP 1102.

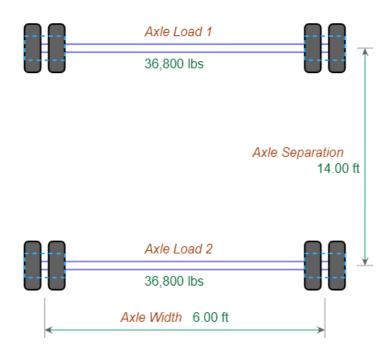
Input Data

Pipe Outside Diameter, D	inch	12.75
Pipe Wall Thickness, t	inch	0.312
Pipe Specified Minimum Yield Strength, SMYS	psi	65,000
Maximum Allowable Operating Pressure, MAOP	psi	1440.0
Temperature Differential, ΔT	°F	50.0
Dry unit weight of Soil, γ	lb/ft³	120.0
Pipe Buried Depth, C	ft	1.50
Pipe Bedding Angle, θ	0	30
Type of Soil : Coarse-grained soils with little or no fines (SP, SW, GP, GW)		
Soil Standard AASHTO Relative Compaction	%	85

Reference Data

Soil Load on Pipe, Pv	psi	1.25
Live Load on Pipe, P_Live	psi	40.67
Moment Parameter, Kb	-	0.235
Deflection Parameter, Kz	-	0.108
Modulus of Soil Reaction, E'	psi	100.0
Impact Factor, F	-	1.50

Hoop Stress Internal Pressure, σ H_internal	psi	29,423
Hoop Stress Live Load, σ <i>H_Live</i>	psi	22,998
Hoop Stress Soil Load, σ H_Soil	psi	707
Longitudinal Interal Pressure, σ <i>L_Internal</i>	psi	8,827
Longitudinal Soil Load, σ L_Soil	psi	212
Longitudinal Local Bending Stress, σ L_Local	psi	7,454
Longitudinal Thermal Stress, σ L_Thermal	psi	9,750
Hoop Stress Total, σ <i>H_Total</i>	psi	53,128
Longitudinal Total, σ <i>L_Total</i>	psi	26,243
Combined Stress per Max Shear Stress Theory, σ $\it E$	psi	53,128
Combined Stress per Von Mises Theory, σ E	psi	46,011


	Hoop Stress	Allowable 1	Pass/ Fail
Hoop Stress Caused by Live Load, psi	22,998	12,000	Fail

Stress Check

	SMYS %	Allowable ¹	Pass/ Fail
Hoop Stress Total	81.7	90.0	Pass
Longitudinal Total	40.4	90.0	Pass
Combined Stress per Max Shear Stress Theory	81.7	90.0	Pass
Combined Stress per Von Mises Theory	70.8	90.0	Pass

Notes:

- 1. Allowable limits are default. Users shall confirm allowable limits based upon applicable codes and standards.
- 2. Fatigue check is only required for long term or high cycle implementation.

https://pipeeng.com/CEPA_calc.html

Project	ANGP 1.5', 0 deg., E'=100	Developer	GRL
Date	2021-10-03	Approver	
Revision	1	Reviewer	

This calculation tool was developed using equations and methods contained in the final report of "Development of a Pipeline Surface Loading Screening Process & Assessment of Surface Load Dispersing Methods" published by David J. Warman, etc. This report was developed by Kiefner & Associates, Inc for Canadian Energy Pipeline Association (CEPA) to provide a practical method which can determine the potential loading effects of the temporary crossing by vehicles and equipment in locations without established roads. It is also very useful to verify pipe stresses when cover depths or surface load exceeds limits embodied in API RP 1102.

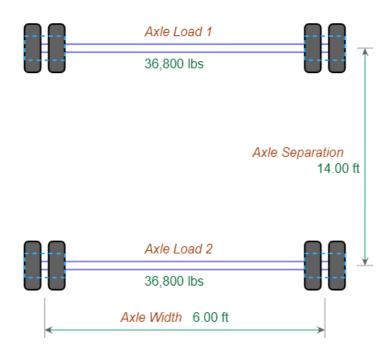
Input Data

Pipe Outside Diameter, D	inch	12.75
Pipe Wall Thickness, t	inch	0.312
Pipe Specified Minimum Yield Strength, SMYS	psi	65,000
Maximum Allowable Operating Pressure, MAOP	psi	1440.0
Temperature Differential, ΔT	°F	50.0
Dry unit weight of Soil, γ	lb/ft³	120.0
Pipe Buried Depth, C	ft	1.50
D' D LE A L O		
Pipe Bedding Angle, θ	•	0
Type of Soil: Coarse-grained soils with little or no fines (SP, SW, GP, GW)	0	0

Reference Data

Soil Load on Pipe, Pv	psi	1.25
Live Load on Pipe, P_Live	psi	40.67
Moment Parameter, Kb	-	0.294
Deflection Parameter, Kz	-	0.110
Modulus of Soil Reaction, E'	psi	100.0
Impact Factor, F	-	1.50

Hoop Stress Internal Pressure, σ H_internal	psi	29,423
Hoop Stress Live Load, σ <i>H_Live</i>	psi	28,503
Hoop Stress Soil Load, σ H_Soil	psi	876
Longitudinal Interal Pressure, σ L_Internal	psi	8,827
Longitudinal Soil Load, σ <i>L_Soil</i>	psi	263
Longitudinal Local Bending Stress, σ <i>L_Local</i>	psi	9,238
Longitudinal Thermal Stress, σ L_Thermal	psi	9,750
Hoop Stress Total, σ H_Total	psi	58,802
Longitudinal Total, σ <i>L_Total</i>	psi	28,078
Combined Stress per Max Shear Stress Theory, σ $\it E$	psi	58,802
Combined Stress per Von Mises Theory, σ E	psi	50,941


	Hoop Stress	Allowable 1	Pass/ Fail
Hoop Stress Caused by Live Load, psi	28,503	12,000	Fail

Stress Check

	SMYS %	Allowable ¹	Pass/ Fail
Hoop Stress Total	90.5	90.0	Fail
Longitudinal Total	43.2	90.0	Pass
Combined Stress per Max Shear Stress Theory	90.5	90.0	Fail
Combined Stress per Von Mises Theory	78.4	90.0	Pass

Notes:

- 1. Allowable limits are default. Users shall confirm allowable limits based upon applicable codes and standards.
- 2. Fatigue check is only required for long term or high cycle implementation.

https://pipeeng.com/CEPA_calc.html

Project	ANGP 2.0', 30 deg., E'=100	Developer	GRL
Date	2021-10-03	Approver	
Revision	1	Reviewer	

This calculation tool was developed using equations and methods contained in the final report of "Development of a Pipeline Surface Loading Screening Process & Assessment of Surface Load Dispersing Methods" published by David J. Warman, etc. This report was developed by Kiefner & Associates, Inc for Canadian Energy Pipeline Association (CEPA) to provide a practical method which can determine the potential loading effects of the temporary crossing by vehicles and equipment in locations without established roads. It is also very useful to verify pipe stresses when cover depths or surface load exceeds limits embodied in API RP 1102.

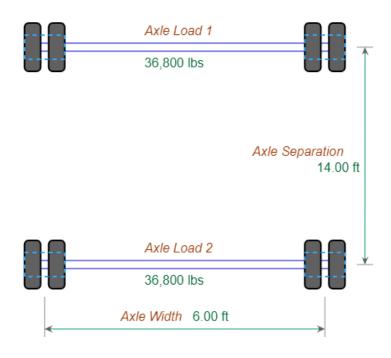
Input Data

Pipe Outside Diameter, D	inch	12.75
Pipe Wall Thickness, t	inch	0.312
Pipe Specified Minimum Yield Strength, SMYS	psi	65,000
Maximum Allowable Operating Pressure, MAOP	psi	1440.0
Temperature Differential, ΔT	°F	50.0
Dry unit weight of Soil, γ	lb/ft³	120.0
Pipe Buried Depth, C	ft	2.00
Pipe Bedding Angle, θ	•	30
Type of Soil : Coarse-grained soils with little or no fines (SP, SW, GP, GW)		
Soil Standard AASHTO Relative Compaction	%	85

Reference Data

Soil Load on Pipe, Pv	psi	1.67
Live Load on Pipe, P_Live	psi	22.88
Moment Parameter, Kb	-	0.235
Deflection Parameter, Kz	-	0.108
Modulus of Soil Reaction, E'	psi	100.0
Impact Factor, F	-	1.50

Hoop Stress Internal Pressure, σ H_internal	psi	29,423
Hoop Stress Live Load, σ <i>H_Live</i>	psi	12,936
Hoop Stress Soil Load, σ H_Soil	psi	942
Longitudinal Interal Pressure, σ <i>L_Internal</i>	psi	8,827
Longitudinal Soil Load, σ L_Soil	psi	283
Longitudinal Local Bending Stress, σ L_Local	psi	4,193
Longitudinal Thermal Stress, o L_Thermal	psi	9,750
Hoop Stress Total, σ <i>H_Total</i>	psi	43,302
Longitudinal Total, σ <i>L_Total</i>	psi	23,052
Combined Stress per Max Shear Stress Theory, σ E	psi	43,302
Combined Stress per Von Mises Theory, σ E	psi	37,527


	Hoop Stress	Allowable 1	Pass/ Fail
Hoop Stress Caused by Live Load, psi	12,936	12,000	Fail

Stress Check

	SMYS %	Allowable ¹	Pass/ Fail
Hoop Stress Total	66.6	90.0	Pass
Longitudinal Total	35.5	90.0	Pass
Combined Stress per Max Shear Stress Theory	66.6	90.0	Pass
Combined Stress per Von Mises Theory	57.7	90.0	Pass

Notes:

- 1. Allowable limits are default. Users shall confirm allowable limits based upon applicable codes and standards.
- 2. Fatigue check is only required for long term or high cycle implementation.

https://pipeeng.com/CEPA_calc.html

Project	ANGP 2.0', 0 deg., E'=100	Developer	GRL
Date	2021-10-03	Approver	
Revision	1	Reviewer	

This calculation tool was developed using equations and methods contained in the final report of "Development of a Pipeline Surface Loading Screening Process & Assessment of Surface Load Dispersing Methods" published by David J. Warman, etc. This report was developed by Kiefner & Associates, Inc for Canadian Energy Pipeline Association (CEPA) to provide a practical method which can determine the potential loading effects of the temporary crossing by vehicles and equipment in locations without established roads. It is also very useful to verify pipe stresses when cover depths or surface load exceeds limits embodied in API RP 1102.

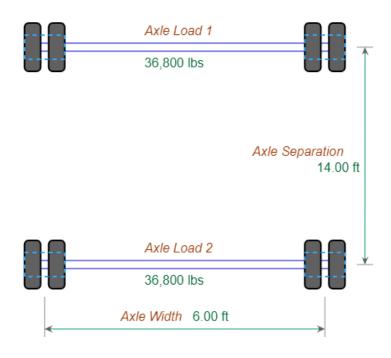
Input Data

Pipe Outside Diameter, D	inch	12.75
Pipe Wall Thickness, t	inch	0.312
Pipe Specified Minimum Yield Strength, SMYS	psi	65,000
Maximum Allowable Operating Pressure, MAOP	psi	1440.0
Temperature Differential, ΔT	°F	50.0
Dry unit weight of Soil, γ	lb/ft³	120.0
Pipe Buried Depth, C	ft	2.00
Pipe Bedding Angle, θ	•	0
Type of Soil : Coarse-grained soils with little or no fines (SP, SW, GP, GW)		
Soil Standard AASHTO Relative Compaction	%	85

Reference Data

Soil Load on Pipe, Pv	psi	1.67
Live Load on Pipe, P_Live	psi	22.88
Moment Parameter, Kb	-	0.294
Deflection Parameter, Kz	-	0.110
Modulus of Soil Reaction, E'	psi	100.0
Impact Factor, F	-	1.50

Hoop Stress Internal Pressure, σ H_internal	psi	29,423
Hoop Stress Live Load, σ H_Live	psi	16,033
Hoop Stress Soil Load, σ H_Soil	psi	1,168
Longitudinal Interal Pressure, σ <i>L_Internal</i>	psi	8,827
Longitudinal Soil Load, σ L_Soil	psi	350
Longitudinal Local Bending Stress, σ L_Local	psi	5,196
Longitudinal Thermal Stress, σ L_Thermal	psi	9,750
Hoop Stress Total, σ <i>H_Total</i>	psi	46,624
Longitudinal Total, σ <i>L_Total</i>	psi	24,124
Combined Stress per Max Shear Stress Theory, σ E	psi	46,624
Combined Stress per Von Mises Theory, σ E	psi	40,386


	Hoop Stress	Allowable 1	Pass/ Fail
Hoop Stress Caused by Live Load, psi	16,033	12,000	Fail

Stress Check

	SMYS %	Allowable ¹	Pass/ Fail
Hoop Stress Total	71.7	90.0	Pass
Longitudinal Total	37.1	90.0	Pass
Combined Stress per Max Shear Stress Theory	71.7	90.0	Pass
Combined Stress per Von Mises Theory	62.1	90.0	Pass

Notes:

- 1. Allowable limits are default. Users shall confirm allowable limits based upon applicable codes and standards.
- 2. Fatigue check is only required for long term or high cycle implementation.

Project:ANGP GPTC 1.5", 3" W, 30 deg, 18,400_Copy_Copy

Location:Clay Swamp Date:10/3/2021

GPTC Guide Appendix G192-15- Design of Uncased (Gas)

Pipe Description

Pipe Type Pipe Line - API Specification 5L

Select Nominal Pipe Diameter 12-3/4 inch
Outside Diameter [inch] 12.750
Wall Thickness [inch] 0.312
Pipe Grade X65

SMYS [psi] 65000 Location Class 3

Design Factor 0.50

Steel Pipe and Location Data

Soil Type Extreme Maximum For Clay(Completely Saturated)

Uniform Support Under Pipe [°] and Crossing Conditions 30* Open Trench

Pipe Class:

Joint Type Electric Resistance Welded and Flash Welded

Longitudinal Joint Factor 1.0

Youngs Modulus of Elasticity [psi] 30000000.00

T - Temperature Derating Factor:

Temperature [deg F] 250.0 or less

Temperature Derating Factor 1.000

Impact Factor: Non-Rigid Pavement

Pipe and Operational Data:

Average Unit Weight of Soil [lb/ft3] 120.00

Deflection Parameter 0.108

Bending Parameter 0.235

Impact Factor 1.5

Pipeline Internal Pressure [psig] 1440.00

Wheel Load 18400

Width of Pipe Trench or Diameter of Bore [ft] 3.000

Height of Soil Over Pipe [ft] 1.500

Results:		
Load Coefficient		0.474
Total External Load [lbf/in]		560.39
Hoop Stress due to Internal Pressure [psi]	29423.09
Hoop Stress due to External Loading [25103.49
Total Calculated Combined Stress [psi]	54526.58
Note: The total calculated combined str		
Notes:		
Reference: GPTC - Guide for Gas	Transmission and Distribution System	ms, Appendix G-192-15, A.G.A.
Prepared By:Gregory Liebert	Approved By:	Prepared Using: Pipeline Toolbox

Project:ANGP GPTC 1.5", 3" W, 0 deg, 18,400_Copy_Copy_Copy

Location:Clay Swamp Date:10/3/2021

GPTC Guide Appendix G192-15- Design of Uncased (Gas)

Pipe Description

Pipe Type Pipe Line - API Specification 5L

Select Nominal Pipe Diameter 12-3/4 inch
Outside Diameter [inch] 12.750
Wall Thickness [inch] 0.312

Pipe Grade X65
SMYS [psi] 65000
Location Class 3

Design Factor

Steel Pipe and Location Data

Soil Type Extreme Maximum For Clay(Completely Saturated)

0.50

Uniform Support Under Pipe [°] and Crossing Conditions 0* Consolidate Rock

Pipe Class:

Joint Type Electric Resistance Welded and Flash Welded

Longitudinal Joint Factor 1.0

Youngs Modulus of Elasticity [psi] 30000000.00

T - Temperature Derating Factor:

Temperature [deg F] 250.0 or less

Temperature Derating Factor 1.000

Impact Factor: Non-Rigid Pavement

Pipe and Operational Data:

Average Unit Weight of Soil [lb/ft3] 120.00

Deflection Parameter 0.110

Bending Parameter 0.294

Impact Factor 1.5

Pipeline Internal Pressure [psig] 1440.00

Wheel Load 18400

Width of Pipe Trench or Diameter of Bore [ft] 3.000

Height of Soil Over Pipe [ft] 1.500

Results:		
Load Coefficient		0.474
Total External Load [lbf/in]		560.39
Hoop Stress due to Internal Pressure [[psi]	29423.09
Hoop Stress due to External Loading [psi]	31109.45
Total Calculated Combined Stress [psi	i]	60532.54
Note: The total calculated combined str	ress should not exceed 100% of SMYS	
Notoc		
Notes:		
Reference: GPTC - Guide for Gas	Transmission and Distribution System	ms, Appendix G-192-15, A.G.A.
Prepared By:Gregory Liebert	Approved By:	Prepared Using: Pipeline Toolbox

Project:ANGP GPTC 2.0", 3" W, 30 deg, 18,400_Copy_Copy_Copy_Copy

Location:Clay Swamp Date:10/3/2021

GPTC Guide Appendix G192-15- Design of Uncased (Gas)

Pipe Description

Pipe Type Pipe Line - API Specification 5L

Select Nominal Pipe Diameter 12-3/4 inch
Outside Diameter [inch] 12.750
Wall Thickness [inch] 0.312
Pipe Grade X65
SMYS [psi] 65000

Location Class 3

Design Factor 0.50

Steel Pipe and Location Data

Soil Type Extreme Maximum For Clay(Completely Saturated)

Uniform Support Under Pipe [°] and Crossing Conditions 30* Open Trench

Pipe Class:

Joint Type Electric Resistance Welded and Flash Welded

Longitudinal Joint Factor 1.0

Youngs Modulus of Elasticity [psi] 30000000.00

T - Temperature Derating Factor:

Temperature [deg F] 250.0 or less

Temperature Derating Factor 1.000

Impact Factor: Non-Rigid Pavement

Pipe and Operational Data:

Average Unit Weight of Soil [lb/ft3] 120.00

Deflection Parameter 0.108

Bending Parameter 0.235

Impact Factor 1.5

Pipeline Internal Pressure [psig] 1440.00

Wheel Load 18400

Width of Pipe Trench or Diameter of Bore [ft] 3.000

Height of Soil Over Pipe [ft] 2.000

Results:		
Load Coefficient		0.615
Total External Load [lbf/in]		346.59
Hoop Stress due to Internal Pressure [psi]	29423.09
Hoop Stress due to External Loading [psi]	15526.02
Total Calculated Combined Stress [psi		44949.11
Note: The total calculated combined str		
Notes:		
	Transmission and Distribution Syster	ms, Appendix G-192-15, A.G.A.
Prepared By:Gregory Liebert	Approved By:	Prepared Using: Pipeline Toolbox

Project:ANGP GPTC 2.0", 3" W, 0 deg, 18,400_Copy_Copy_Copy_Copy_Copy

Location:Clay Swamp Date:10/3/2021

GPTC Guide Appendix G192-15- Design of Uncased (Gas)

Pipe Description

Pipe Type Pipe Line - API Specification 5L

Select Nominal Pipe Diameter 12-3/4 inch
Outside Diameter [inch] 12.750
Wall Thickness [inch] 0.312
Pipe Grade X65

SMYS [psi] 65000 Location Class 3

Design Factor 0.50

Steel Pipe and Location Data

Soil Type Extreme Maximum For Clay(Completely Saturated)

Uniform Support Under Pipe [°] and Crossing Conditions 0* Consolidate Rock

Pipe Class:

Joint Type Electric Resistance Welded and Flash Welded

Longitudinal Joint Factor 1.0

Youngs Modulus of Elasticity [psi] 30000000.00

T - Temperature Derating Factor:

Temperature [deg F] 250.0 or less

Temperature Derating Factor 1.000

Impact Factor: Non-Rigid Pavement

Pipe and Operational Data:

Average Unit Weight of Soil [lb/ft3] 120.00

Deflection Parameter 0.110

Bending Parameter 0.294

Impact Factor 1.5

Pipeline Internal Pressure [psig] 1440.00

Wheel Load 18400

Width of Pipe Trench or Diameter of Bore [ft] 3.000

Height of Soil Over Pipe [ft] 2.000

Results:		
Load Coefficient		0.615
Total External Load [lbf/in]		346.59
Hoop Stress due to Internal Pressure [psi]	29423.09
Hoop Stress due to External Loading [psi]	19240.59
Total Calculated Combined Stress [psi		48663.68
Note: The total calculated combined str		
Notes:		
	Transmission and Distribution Syster	ms, Appendix G-192-15, A.G.A.
Prepared By:Gregory Liebert	Approved By:	Prepared Using: Pipeline Toolbox

Project:ANGP GPTC 1.7", 3" W, 0 deg, 18,400_Copy_Copy_Copy_Copy_Copy_Copy

Location:Clay Swamp

Date:10/3/2021

GPTC Guide Appendix G192-15- Design of Uncased (Gas)

Pipe Description

Pipe Type Pipe Line - API Specification 5L

Select Nominal Pipe Diameter 12-3/4 inch
Outside Diameter [inch] 12.750

 Wall Thickness [inch]
 0.312

 Pipe Grade
 X65

 SMYS [psi]
 65000

Location Class 3

Design Factor 0.50

Steel Pipe and Location Data

Soil Type Extreme Maximum For Clay(Completely Saturated)

Uniform Support Under Pipe [°] and Crossing Conditions 0* Consolidate Rock

Pipe Class:

Joint Type Electric Resistance Welded and Flash Welded

Longitudinal Joint Factor 1.0

Youngs Modulus of Elasticity [psi] 30000000.00

T - Temperature Derating Factor:

Temperature [deg F] 250.0 or less

Temperature Derating Factor 1.000

Impact Factor: Non-Rigid Pavement

Pipe and Operational Data:

Average Unit Weight of Soil [lb/ft3] 120.00

Deflection Parameter 0.110

Bending Parameter 0.294

Impact Factor 1.5

Pipeline Internal Pressure [psig] 1440.00

Wheel Load 18400

Width of Pipe Trench or Diameter of Bore [ft] 3.000

Height of Soil Over Pipe [ft] 1.700

Results:		
Load Coefficient		0.531
Total External Load [lbf/in]		450.82
Hoop Stress due to Internal Pressure [psi]	29423.09
Hoop Stress due to External Loading [psi]	25026.74
Total Calculated Combined Stress [psi		54449.83
Note: The total calculated combined str		
Notes:		
Reference:GPTC - Guide for Gas	Transmission and Distribution System	ms, Appendix G-192-15, A.G.A.
Prepared By:Gregory Liebert	Approved By:	Prepared Using: Pipeline Toolbox

Project: Wheel Loading 4' H, 5' W_Copy

Location:ANGP Date:08/17/2018

Wheel Load Analysis (Gas)

Pipe Description

Pipe Type Pipe Line - API Specification 5L

Select Nominal Pipe Diameter 12-3/4 inch
Outside Diameter [inch] 12.750
Wall Thickness [inch] 0.312
Pipe Grade X65
SMYS [psi] 65000

Soil Type Saturated Clay

Top Layers/Pavement Type &Material No Pavement

Crossing Construction Type Open Cut

Operating Class 3

Pipe and Operational Data

Maximum Allowable Internal Stress [%]50Maximum Allowable Combined Stress [%]60Kμ Friction Force Coefficient0.110Weight per Unit of Backfill [lb/ft3]120.00Impact Factor1.5

Modulus of Elasticity of the Top Layers [psi] 15000.00 Modulus of Elasticity of the Soil Cover [psi] 15000.00 Poisson's Ratio of the Top Layers 0.35 Poisson's Ratio of the Soil Cover 0.35 0.235 **Kb Bending Coefficient** Kz Deflection Coefficient 0.108 Pipe Internal Pressure [psi] 1440.00 Concentrated Surface Load [lbf] 18400.00 H - Vertical Depth of the Soil Cover [ft] 4.00 HI Thickness of the Pavement Layers [inch]

B - Trench Width [ft] 5.00
Include Longitudinal Bending Stress In Calculation: No
X - Longitudinal Distance [ft] 0
Y - Vertical Deflection [inch] 0

Results:		
Cd Load Coefficient		0.734
Wc Load due to Overburden [lbf/in]		183.32
Wv Average Vehicular Load [lbf/in]		72.81
WT Total Load [lbf/in]		256.12
Sb Longitudinal Bending Stress [psi]		0
Sc Circumferential Stress [psi]		11273.24
Sh Hoop Stress [psi]		29423.09
St Total Circumferential Stress [psi]		40696.32
S Total Combined Stress [psi]		40696.32
Percent of SMYS = S 100 / SMYS		62.610
Above Maximum Combined Stress		
Notes:		
Reference: ASME B31.8 and "Evaluation of Buried Pipe Encroachments", Battelle Petroleum Technology "		
Prepared By:Gregory Liebert	Approved By:	Prepared Using: Pipeline Toolbox
	I to the second	· • •

Project: Wheel Loading 3' H, 4' W_Copy_Copy

Location:ANGP Date:08/17/2018

Wheel Load Analysis (Gas)

Pipe Description

SMYS [psi]

Pipe Type Pipe Line - API Specification 5L

65000

Select Nominal Pipe Diameter 12-3/4 inch
Outside Diameter [inch] 12.750
Wall Thickness [inch] 0.312
Pipe Grade X65

Soil Type Saturated Clay
Top Layers/Pavement Type &Material No Pavement

Crossing Construction Type Open Cut

Operating Class 3

Pipe and Operational Data

Maximum Allowable Internal Stress [%]50Maximum Allowable Combined Stress [%]60Kμ Friction Force Coefficient0.110Weight per Unit of Backfill [lb/ft3]120.00Impact Factor1.5

Modulus of Elasticity of the Top Layers [psi] 15000.00

Modulus of Elasticity of the Soil Cover [psi] 15000.00

Poisson's Ratio of the Top Layers

Poisson's Ratio of the Soil Cover

Concentrated Surface Load [lbf]

H - Vertical Depth of the Soil Cover [ft]

O.35

Ratio of the Top Layers

O.35

Concentrated Surface Load [lbf]

H - Vertical Depth of the Soil Cover [ft]

O.35

Concentrated Surface Load [lbf]

Double Soil Cover [ft]

O.35

D.35

D.35

D.35

D.35

D.35

D.35

D.35

D.35

D.35

D.36

D.37

D.

B - Trench Width [ft] 4.00
Include Longitudinal Bending Stress In Calculation: No
X - Longitudinal Distance [ft] 0
Y - Vertical Deflection [inch] 0

Results:		
Cd Load Coefficient	0.691	
Vc Load due to Overburden [lbf/in]	110.58	
Vv Average Vehicular Load [lbf/in]	129.44	
VT Total Load [lbf/in]	240.02	
b Longitudinal Bending Stress [psi]	0	
c Circumferential Stress [psi]	10564.25	
h Hoop Stress [psi]	29423.09	
t Total Circumferential Stress [psi]	39987.34	
Total Combined Stress [psi]	39987.34	
Percent of SMYS = S 100 / SMYS	61.519	
above Maximum Combined Stress		

Notes:

Reference: ASME B31.8 and "Evaluation of Buried Pipe Encroachments", Battelle Petroleum Technology "

Project: Wheel Loading 2' H, 3' W_Copy_Copy_Copy

Location:ANGP Date:08/17/2018

Wheel Load Analysis (Gas)

Pipe Description

Pipe Type Pipe Line - API Specification 5L

Select Nominal Pipe Diameter 12-3/4 inch
Outside Diameter [inch] 12.750
Wall Thickness [inch] 0.312
Pipe Grade X65
SMYS [psi] 65000

Soil Type Saturated Clay
Top Layers/Pavement Type &Material No Pavement
Crossing Construction Type Open Cut

Operating Class 3

Pipe and Operational Data

Modulus of Elasticity of the Top Layers [psi]

Maximum Allowable Internal Stress [%]50Maximum Allowable Combined Stress [%]60Kμ Friction Force Coefficient0.110Weight per Unit of Backfill [lb/ft3]120.00Impact Factor1.5

15000.00

Modulus of Elasticity of the Soil Cover [psi] 15000.00 Poisson's Ratio of the Top Layers 0.35 Poisson's Ratio of the Soil Cover 0.35 0.235 **Kb Bending Coefficient** Kz Deflection Coefficient 0.108 Pipe Internal Pressure [psi] 1440.00 Concentrated Surface Load [lbf] 18400.00 H - Vertical Depth of the Soil Cover [ft] 2.00

HI Thickness of the Pavement Layers [inch] 0
B - Trench Width [ft] 3.00
Include Longitudinal Bending Stress In Calculation: No
X - Longitudinal Distance [ft] 0
Y - Vertical Deflection [inch] 0

Results:		
Cd Load Coefficient		0.473
Wc Load due to Overburden [lbf/in]		75.73
Wv Average Vehicular Load [lbf/in]		291.23
WT Total Load [lbf/in]		366.96
Sb Longitudinal Bending Stress [psi]		0
Sc Circumferential Stress [psi]		16151.72
Sh Hoop Stress [psi]		29423.09
St Total Circumferential Stress [psi]		45574.81
S Total Combined Stress [psi]		45574.81
Percent of SMYS = S 100 / SMYS		70.115
Above Maximum Combined Stress		
Notes		
Notes: Reference: ASME B31.8 and "Evaluation of Buried Pipe Encroachments", Battelle Petroleum Technology "		
Prepared By:Gregory Liebert	Approved By:	Prepared Using: Pipeline Toolbox